Cppcheck Defects Detection Automation
for the Athena Full Scan

SHARMAZANASHVILI Alexander
Georgian Technical University

TODUA Luka
Georgian Technical University

https://indico.cern.ch/event/925741/

= Cppcheck Scan

* Cppcheck automation is Finished and Source codes are placed at Coverity Server
aibuild002.cern.ch under /build/cppcheck/ directory.

* To access the automation tool user must have access on Coverity server
* The access on Coverity server is controlled via an egroup:

https://e-groups.cern.ch/e-groups/Egroup.do?egroupld=220386

* To Startup the full automation process, user needs valid Kerberos ticket for Jira ticket creation
and Developers permission at ATLASSQ Jira group. only thing left is to run one bash shell file
(auto.sh).

https://indico.cern.ch/event/925741/

https://mmm.cern.ch/owa/redir.aspx?C=6XHychG37BPkhj2xx2jcfuiIg3MC01SzHt88B8WnzujzBGFD-hDYCA..&URL=https%3a%2f%2fe-groups.cern.ch%2fe-groups%2fEgroup.do%3fegroupId%3d220386

= Cppcheck Automation

Running auto.sh is capable of:

A

o

oo

Cloning/Pulling Athena repository

Scanning Athena repository with Cppcheck. Generating Defects list in XML format
Finding new Defects. Comparison of past week Defects list and current Defects list
Searching Authors, their Emails and MR date for each Defect with Git command

Finding Defect Authors username in Cern phonebook for Jira Tickets with Ldapsearch
command

Creating Jira Tickets and assigning to Defect Authors automatically

Generating Statistical data such as Overall Defects, Fixed Defects, Overall Fixed Defects
in XML format

Converting XML files to HTML tables
Uploading HTML tables to Cppcheck Web page:
http://cppcheck-list.web.cern.ch/cppcheck-list/

https://indico.cern.ch/event/925741/

http://cppcheck-list.web.cern.ch/cppcheck-list/

= Automation Files

This is automate.cpp file. Here we clone or pull Athena repository
From Gitlab, scan it with Cppcheck check all definitions enabled,
Then run nodejs based defects filter function for getting new defects and

auto.sh shell file is the main file which runs automation
with git log we get authors name, email, MR date for each defect

Steps, such as generating defects xml file, converting it into
.html table, getting defect author usernames for jira and
Creating Jira tickets for each defect. ——

string name
string mail

e

if(line.
4p auto.sh '
line. (

line. (line. mr: . +mrdate
line. (line. av +name+
line. (line. +mail+ "

source config.sh

printf *

datastring += lime +"\n";

data = datastring;
(writefile, data);

cout<<™

https://indico.cern.ch/event/925741/ 4

= Automation Files

This is main.js file, part of the defects filter function, from Cppcheck
generated xml defects we remove cppcheck “UnknownMacro” defects,
Because they are cppcheck scanning errors. Cppcheck isn’t able to find
All definition of the macro. Then from the rest of the defects we get file
Path, defect message, line and modify it into MultiMap Data Structure
and write in Json file

main.js

(args[1], (err, data) => {

sults'][‘errors’]['error’];

"unknownmacro™) {

This is compare.js file, second part of the defects filter function,
here we have Map to Map defect comparison. where Map key

value is File path. If file paths are matched they compare Map values
of each other. Map values are defect message and line. If defect
message is different this means that we found a new defect and we
save it into new json File. This happens for every defect in json files
generated from main.js. The same way we also generate cppcheck
statistical data such as overall defects, fixed defects and

overall fixed defects.

<4)» compare;js

length; k++) {

old.length; z++) {

ge == dold[z].message) {

https://indico.cern.ch/event/925741/ 5

Automation Files

This is convert_xml_to_html.cpp file,
With fstream we are reading new defects xml file,
Getting data such as file path, defect message,
authors, emails And creating html tables for
This is convertor.sh shell file. Which new defects, overall defects, fixed defects, overall fixed
manages converting xml file to html tables defects

convert_xml_to_html.cpp

4» convertor.sh

;o5 i)
-std=c++11 convert xml to html.cpp -o convert xml_to html.out o

' && line[i+1]== """)

if(line[i]== """)
n data;

data += line[i];

https://indico.cern.ch/event/925741/

= Automation Files

_ ldapshellcreator.cpp creates ldap.sh shell file. Full of 1dapsearch
Upload.sh shell file, runs ldapshellcreator.cpp, command For each defect author. With help of Ldapsearch

Ldap.sh and LdapReader.cpp file. Processing all command we search for authors usernames by their name
this files are Needed for automatic assigning of in CERN phonebook.

Jira tickets

4» Idapshelicreator.cpp

4p upload.sh

data += line[i];

i With LdapReader.cpp file, we read output of
ldap.sh, ldap.txt file, from where we find authors
usernames and insert it into new defects Xml file

-std=ct+#11 ldapshellcreator.cpp -o ldapshellcreator.out

a+x ldap.sh

-std=ct++11 LdapReader.cpp -o LdapReader.out
4» LdapReader.cop

return "7;

This is 1dap.txt file. output
of 1dap.sh shell file

[3 Idap.tit

("1ldap.sh™);

)i
<< ldapstart + ldap + ldapend;

» with scope subtree
a todua))

string autho

line. (line. ® username=\"" + data[author] + ™\" ");
datastring += line +

c Units, cern.ch

OU=0rganic Units,DC=cern,DC=ch

ofstream
write <<

numRes|
num|

https://indico.cern.ch/event/925741/ 7

= Automation Files

jiraticketcreator.sh file generates json file for Jira REST API from new

defects xml file, with cern-get-sso-cookie command we get

authentication cookie file from Kerberos ticket and with CURL POST

request we send Jira REST API generated file to Jira web page for

ticket creation.

This is jiradatamaker.cpp file, here we process new defects xml
to create json format data file for Jira REST API

4pr jiraticketcreator.sh

+x jiraticketcreator.sh

4p jiradatamaker.cpp

-std=c++11 jiradatamaker.cpp -o jiradatamaker.out

c wrn F c c cr string author =
its.cern.ch/jira/loginCern.jsp -o jira.txt

string mail =

string username =

jsondata +

jsondata +=

jsondata +

jsendata += "||

jsondata += ||

jsondata +=

jsendata += "||Fi - 1 me + file +"]| \\n ";
jsondata 4= [- i + file + "#
jsondata += " A
jsondata += "||Autho + author +

jsondata += "||Mail] |" + mail + *|

jsondata + "n

jsondata +=

ofstream
write <<

https://indico.cern.ch/event/925741/

= Results of automation:

2. Jira Tickets

. Cpp(he(l: 5(an Repurt 11 18 2019

1. .Atml table of the new defects

https://cppcheck-list.web.cern.ch/cppcheck-list/

Vu‘,aﬂ

athena\Control\AthenaServices Memory leak: o

02112020 g 02.06:2020 | 1357 o e oo Vakho Tsulaia || vakhtang.tsulaia@cern.ch
R -

02112020 || \MuonSegmentMakers\MuonSegmentMakeralgs || 02-10-2020 || 1572 || Invalid iterator ‘iel' used. “T::h':“' willam.axelleight@cern.ch
\CscSegmentMakers\src\CscSegmentUtil Tool.cxx
athena\MuonS :

02112020 || \MuonSegmentMakers\\MuonSegmentMakeralgs || 02-10-2020 | 1588 || Invalid iterator 'icl' used. ““l;;f‘" william.axelleight@cern.ch
\CscSegmentMakersisrc\CscSegmentUtilTool.exx »

Opening Code on the Gitlab Opening Code on the defected string

3. Statistical data
List of Overall Fixed defects

.
List of Overall defects ——
| SI'ATUS‘ n SCAN DATE FILE MR DATE || LINE DEFECT MESSAGE AUTHOR MAIL
{ Updated:04.28.2020
‘ y..m. e cocta sz | g || Ay et et st rctond’) |y e [sbiasitamgemas
STATUS | 1D | SCAN DATE FILE MR DATE | LINE DEFECT MESSAGE AUTHOR MAIL -
i T T 042820202 04282020 o/lal s b £y 20200424 s Syntaz Ervor: uxm‘m doesn’t have two. Ods
osteren et mtaraimatis wex | 981207 | @ | comtp bt ROAS S s | sonmptr P— St Lokt A >
} J— S S——— .
E enezee atheas/Act et ContralTesthestProzyProvderSve festccs 200010 FOT——— oasond | oizssen ooy | e .
B oo | v wew | m or—
-| T T ————— T prrr—
R S woen | » = ey p—
D= e AT Db T A DBToBecr® | 1 ov 05 ———— .
s | osrszom Y 2081218 e p———
| 04142020 2020-02-11 christos@cern.ch
i . . .
athena/Calorim eter/Cal
E scisame ity =t Tattgemnat List of Fixed defects since the last scan
Gt os
i athena/Calorimeter/CaleMonitoring reotMacros .
ostnren S Weebmpigernch
I /CaloCellVecMonitoring.C STATUS | ID || SCAN DATE FILE MR DATE | LINE DEFECT MESSAGE AUTHOR MAIL
H There is an anknewn macre here somenbere.
-\ — = — S— [P P———————) P R R—"
e
pree—r———
2| wane ey [SRR RITY
[e ol bl oo i emgerms | e .
| 04282020 peseecad Lpeampens 20200409 | 585 | Shiftng by 2 mega
un 04142020 e a e s - 20140411 ‘Walter.Lampla cern.ch

https://indico.cern.ch/event/925741/ 9

= In our SQ group we have 31 authors

® N ok Ny =

11.
12.
13.
14.
15.
16.

Adam Baley

Adam Edward Barton
Ahmed Hasib

Andrei Sukharev
Apostolos Tsirigotis
Benedict Tobias Winter
Ban Nachman

Charles Barton

Chris Lee

Christos Anastopoulos
Dario Barberis
Edward Moyse

Goetz Gaycken

Hao Xu

John Derek Chapman
Matous Vozak

17.
18.
19.
20.
2].
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

v Description

Full Defect List

Site
Nicolas Koehler 1D
Scan Date
Nikita Belyaev T
File
Pascal Boeschoten e
Peter Onysi Defect Message
Rafal Bielski A:::ifr
Ruth POttgen
~ Attachments
Scott Snyder
Shaun Roe

. v Activity
Soshi Tsuno

Al Comments

Susumo Oda

Tim Martin

Tomasz Bold
Walter Lampl
Vakhtang Tsulaia
William Axel Leight

v @ nikita Belyasv added a comment - 28/Apr/20 2:3

Many thanks for pointing that cut! 1 will now fix thal

= We have good feedbacks from authors:

¥ Description

042820201
04-28-2020
2020-04-27

athena/In nerDe‘tecbon"InDetMonitoring/TRTMonitoringR.urE
Alg.cxx

851

Array "trackfound[2][64]' accessed at index trackfound[:]
bounds.

Nikita Belyaev
nikita.belyaev@cern.ch

Full Defect List
Site
D 041520204
Scan Date 04-14-2020
Mr Date 2020-04-11
File athena/MuonSpectrometer/MuonDigitization/MM_Digitization/src/MM_DigitizationTo
ol.ox
Line 1070
Defect Message Possible null pointer dereference: electronicsOutputForTriggerPath
Author Nicolas Koehler
Mail nicolas.koehler@cern.ch

~ Attachments

C;r“:) Drop files ¥ Description
FULL LIST: 02-19-2020

1D: 021720201
SCAN-DATE : 02-17-2020
MR-DATE : 02-12-2020
FILE: athena\Control\Ath¢
LINE: 223

DEFECT MESSAGE : Returt
AUTHOR: Charles Burton
MAIL: burton@utexas.edu

Work Log History Activity

= |

v Attachments

v Activity

Al Comments Work Log

raw pointer.

https://indico.cern.ch/event/925741/

All

w

w

G[Z) Crop files to attach, or browse,

v Activity

Comments Work Log History Activity

4 Nicolas Koehler added a comment - 20/Apr/20 1:56 PM

fixed in https://gitlab.cern.ch/atlas/athena/-/merge_requests/32171

4 Nicolas Koehler added a comment - 21/Apr/20 1:34 PM

https://gitlab.cern.ch/atlas/athena/-/merge_requests/32171 merged

C:r_) Drop files to attach, or browse.

History Activity

v @ Tomasz Bold added 2 comment - 19/Feby/20 1:34 PM

This is real issue. There is the ambiguity of memary ownership here. We say THistSve owns it and we zlso return the

It seems to me we can actually use the histogram locks offered by THistSve, Le, those:
https://acade-browsert.usatlas.bnl.gov/lxr/source/Gaudi/GaudiSve/sro/THistSve/THistSve h#0121

10

Future plans:

» Development of Cppcheck Scan for individual MR’s
»To make Individual MR’s Scanning process automated

» Startup Coverity Scan of the Athena repository

https://indico.cern.ch/event/925741/

11

Development of Cppcheck Scan for individual MR’s

* Objective is to read latest MR’s from Gitlab, initiate individual Cppcheck scanning and
provide defects report back on Gitlab

* We have Developed 6 steps for this process:

Access latest MR’s from the Master branch

Get MR’s file path

Clone Athena repository

Scan MR’s file path with Cppcheck and generate XML file
Create Individual MR’s template and fill it with XML data
Upload template on Gitlab into MR section

Ul W=

* We did 5 MR’s Scan for testing purpose

https://indico.cern.ch/event/925741/ 12

Startup Coverity Scan of the Athena repository

* Re-build Coverity scan of the Athena full repository

* For the moment we have issues with the Coverity build. We are trying to build
ATLAS Externals from the nightly

* After Coverity setup, we will develop the Coverity scan process
e Then it will be possible to run the Coverity scans of Athena full repository
* Also,We will make this process automated

https://indico.cern.ch/event/925741/

13

Thanks for Your Attention!

https://indico.cern.ch/event/925741/

14

