
Cppcheck Defects Detection Automation
for the Athena Full Scan

SHARMAZANASHVILI Alexander
Georgian Technical University

TODUA Luka
Georgian Technical University

1https://indico.cern.ch/event/925741/

 Cppcheck Scan

• Cppcheck automation is Finished and Source codes are placed at Coverity Server
aibuild002.cern.ch under /build/cppcheck/ directory.

• To access the automation tool user must have access on Coverity server

• The access on Coverity server is controlled via an egroup:

https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=220386

• To Startup the full automation process, user needs valid Kerberos ticket for Jira ticket creation
and Developers permission at ATLASSQ Jira group. only thing left is to run one bash shell file
(auto.sh).

2https://indico.cern.ch/event/925741/

https://mmm.cern.ch/owa/redir.aspx?C=6XHychG37BPkhj2xx2jcfuiIg3MC01SzHt88B8WnzujzBGFD-hDYCA..&URL=https%3a%2f%2fe-groups.cern.ch%2fe-groups%2fEgroup.do%3fegroupId%3d220386

 Cppcheck Automation

Running auto.sh is capable of:

1. Cloning/Pulling Athena repository
2. Scanning Athena repository with Cppcheck. Generating Defects list in XML format
3. Finding new Defects. Comparison of past week Defects list and current Defects list
4. Searching Authors, their Emails and MR date for each Defect with Git command
5. Finding Defect Authors username in Cern phonebook for Jira Tickets with Ldapsearch

command
6. Creating Jira Tickets and assigning to Defect Authors automatically
7. Generating Statistical data such as Overall Defects, Fixed Defects, Overall Fixed Defects

in XML format
8. Converting XML files to HTML tables
9. Uploading HTML tables to Cppcheck Web page:

http://cppcheck-list.web.cern.ch/cppcheck-list/

3https://indico.cern.ch/event/925741/

http://cppcheck-list.web.cern.ch/cppcheck-list/

4

auto.sh shell file is the main file which runs automation
Steps, such as generating defects xml file, converting it into
.html table, getting defect author usernames for jira and
Creating Jira tickets for each defect.

This is automate.cpp file. Here we clone or pull Athena repository
From Gitlab, scan it with Cppcheck check all definitions enabled,
Then run nodejs based defects filter function for getting new defects and
with git log we get authors name, email, MR date for each defect

 Automation Files

https://indico.cern.ch/event/925741/

5

 Automation Files

This is main.js file, part of the defects filter function, from Cppcheck
generated xml defects we remove cppcheck “UnknownMacro” defects,
Because they are cppcheck scanning errors. Cppcheck isn’t able to find
All definition of the macro. Then from the rest of the defects we get file
Path, defect message, line and modify it into MultiMap Data Structure
and write in Json file

This is compare.js file, second part of the defects filter function,
here we have Map to Map defect comparison. where Map key
value is File path. If file paths are matched they compare Map values
of each other. Map values are defect message and line. If defect
message is different this means that we found a new defect and we
save it into new json File. This happens for every defect in json files
generated from main.js. The same way we also generate cppcheck
statistical data such as overall defects, fixed defects and
overall fixed defects.

https://indico.cern.ch/event/925741/

6

This is convertor.sh shell file. Which
manages converting xml file to html tables

This is convert_xml_to_html.cpp file,
With fstream we are reading new defects xml file,
Getting data such as file path, defect message,
authors, emails And creating html tables for
new defects, overall defects, fixed defects, overall fixed
defects

 Automation Files

https://indico.cern.ch/event/925741/

7

 Automation Files

Upload.sh shell file, runs ldapshellcreator.cpp,
Ldap.sh and LdapReader.cpp file. Processing all
this files are Needed for automatic assigning of
Jira tickets

ldapshellcreator.cpp creates ldap.sh shell file. Full of ldapsearch
command For each defect author. With help of Ldapsearch
command we search for authors usernames by their name
in CERN phonebook.

This is ldap.txt file. output
of ldap.sh shell file

With LdapReader.cpp file, we read output of
ldap.sh, ldap.txt file, from where we find authors
usernames and insert it into new defects Xml file

https://indico.cern.ch/event/925741/

8

 Automation Files

jiraticketcreator.sh file generates json file for Jira REST API from new
defects xml file, with cern-get-sso-cookie command we get
authentication cookie file from Kerberos ticket and with CURL POST
request we send Jira REST API generated file to Jira web page for
ticket creation.

This is jiradatamaker.cpp file, here we process new defects xml
to create json format data file for Jira REST API

https://indico.cern.ch/event/925741/

 Results of automation:

2. Jira Tickets

3. Statistical data

1. .html table of the new defects

List of Overall defects
List of Overall Fixed defects

List of Fixed defects since the last scan

9https://indico.cern.ch/event/925741/

1. Adam Baley

2. Adam Edward Barton

3. Ahmed Hasib

4. Andrei Sukharev

5. Apostolos Tsirigotis

6. Benedict Tobias Winter

7. Ban Nachman

8. Charles Barton

9. Chris Lee

10. Christos Anastopoulos

11. Dario Barberis

12. Edward Moyse

13. Goetz Gaycken

14. Hao Xu

15. John Derek Chapman

16. Matous Vozak

17. Nicolas Koehler

18. Nikita Belyaev

19. Pascal Boeschoten

20. Peter Onysi

21. Rafal Bielski

22. Ruth POttgen

23. Scott Snyder

24. Shaun Roe

25. Soshi Tsuno

26. Susumo Oda

27. Tim Martin

28. Tomasz Bold

29. Walter Lampl

30. Vakhtang Tsulaia

31. William Axel Leight

10

 In our SQ group we have 31 authors We have good feedbacks from authors:

https://indico.cern.ch/event/925741/

Future plans:

Development of Cppcheck Scan for individual MR’s

To make Individual MR’s Scanning process automated

Startup Coverity Scan of the Athena repository

11https://indico.cern.ch/event/925741/

Development of Cppcheck Scan for individual MR’s

• Objective is to read latest MR’s from Gitlab, initiate individual Cppcheck scanning and
provide defects report back on Gitlab

• We have Developed 6 steps for this process:
1. Access latest MR’s from the Master branch
2. Get MR’s file path
3. Clone Athena repository
4. Scan MR’s file path with Cppcheck and generate XML file
5. Create Individual MR’s template and fill it with XML data
6. Upload template on Gitlab into MR section

• We did 5 MR’s Scan for testing purpose

12https://indico.cern.ch/event/925741/

Startup Coverity Scan of the Athena repository

• Re-build Coverity scan of the Athena full repository

• For the moment we have issues with the Coverity build. We are trying to build
ATLAS Externals from the nightly

• After Coverity setup, we will develop the Coverity scan process

• Then it will be possible to run the Coverity scans of Athena full repository

• Also,We will make this process automated

13https://indico.cern.ch/event/925741/

Thanks for Your Attention!

14https://indico.cern.ch/event/925741/

