

Georgian Technical University (GTU)

GEOMETRY DESCRIPTION BASED ON CATIA CAD

SHARMAZANASHVILI Alexander

https://indico.cern.ch/event/1065545/

ITK Plenary, 08 March 2022

ITK Week 7 Mar 2022 – 11 Mar 2022

TAI Agreement with GTU

- Technical Associate Institute agreement with ATLAS started in 2022 and will follow up to 5 years
- WP04: Cross-checking of Materials Description in the PP1 Region

G10 in the center of Georgia's capital rolins is the largest technical University in Georgia [1] having rich traditions of study and research in engineering disciplines from early in the XIX century. 10 faculties, 21 scientific centers, and 13 affiliated research institutes, 1'176 professors. 442 PhD, 927 doctorate students, 75 researchers are performing scientificresearch activities in the field of – Information Technologies, Cybernetics, Metallurgy and Chemistry, Nanotechnologies, Biotechnologies, Machine Building, Aeronautics, Civil Engineering and Architect, Communications, Power Engineering, Transport, Mining, and Geology.

132

at various levels of ATLAS meetings. The code will be developed and released in accordance with open-source policy of ATLAS collaboration software development. Other visualization projects like GeoModelExplorer, Phoenix will be able to profit from this study by means of the code, expertise, and know-how. FTE assigned: 1.0

Duration: 2 years

WP04: ITK

Cross-checking of Materials Description in the PP1 Region

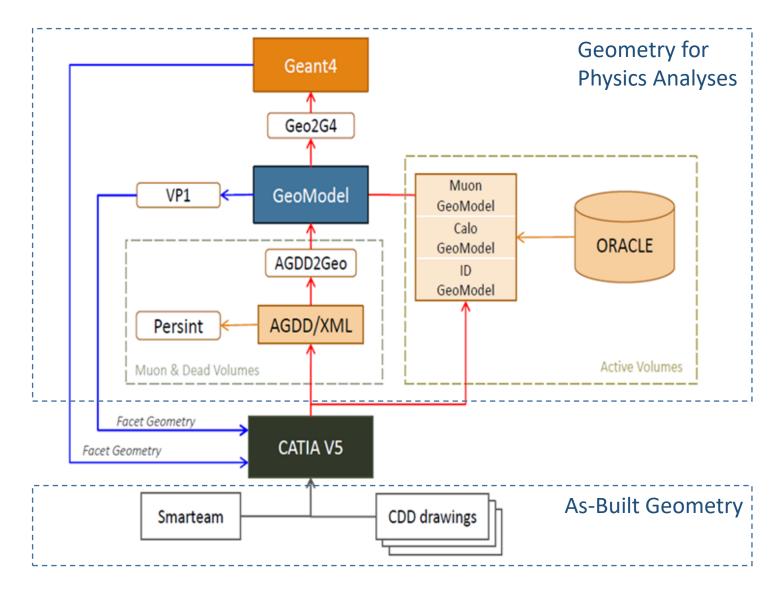
The PPI region of ITk has a very complex geometry. It is essential to have accurate geometry descriptions in that region for precise simulation of the forward region performance. It is proposed to provide a cross-check of the acrual ITk simulation geometry with an "a-build" CATIA CAD geometry. Given its complexity, the PPI region is particularly interesting for this initial analysis. Differences may be discovered in weight, volume, positoning, geometry configurations, and radiation lengths. The CATIA descriptions will be developed starting from the Engineering Databases of ATLAS and comparison analyses will be carried out by the methods and tools developed by GTU in CATIA. The GTU group has developed a unique method that enables to calculation and check of the radiation length in CATIA using non-simplified as-built geometry descriptions. This tool enables to make estimations of geometries.

The team of Georgian Technical University already discussed possible outcomes for ITk on the ITk Offline SW meeting 0n 19 Feb 2021 [11]. Another discussion was at the Simulation Group extended meeting on the Ind of March 2021 [12].

This work is foreseen to be done on an initial 2-year period with the possibility for extensions.

FTE assigned: 2.0 Duration: 2 years

3.3 Duration of the Association


The association as Technical Institute should last until the completion of the work packages described in section 3.2. The work packages have different durations from 2 to 5 years with the possible extensions in case of mutual interests. Therefore, GTU propose an initial membership for five years starting from 2022 to 2026 including.

GTU is open to wider cooperation with the ATLAS and will be attentive to additional requests.

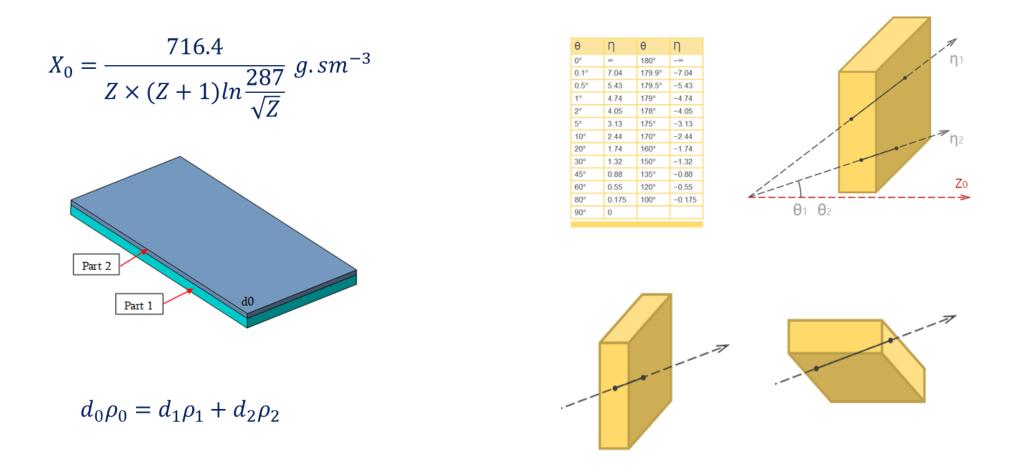
ITK Plenary, 08 March 2022


Simulation Loop with CATIA

CATIA has been integrated in the existing simulation infrastructure of ATLAS

Special connectivity's was developed:

- CATIA-2-XML
- CATIA-2-GeoModel
- GeoModel-2-CATIA
- GEANT-2-CATIA
- Therefore, we are using CATIA as a hub to collect different geometry descriptions and compare them to the CAD engineering DB of CERN

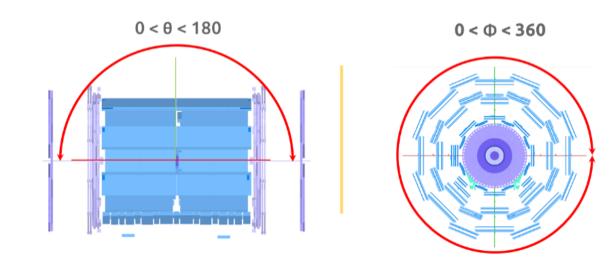


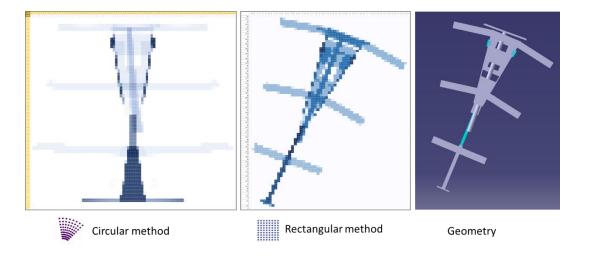
CATIA Analyses include:

- Mass Analyses
- Radiation Analyses
- Conflicts Checking
- Positioning Checking
- Simplification of Geometry

- We are using DMU modules of CATIA and 3rd-party software applications developed by GTU
- We have successful experience working with ATLAS *Muon* group – 14 projects since 2010 and *Tile Calorimeter* group -7 projects since 2020

Study of the Radiation on the early stage of geometry development in CATIA

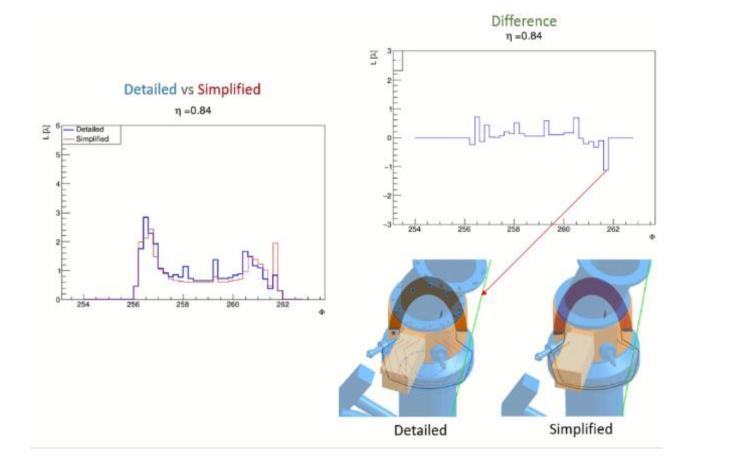


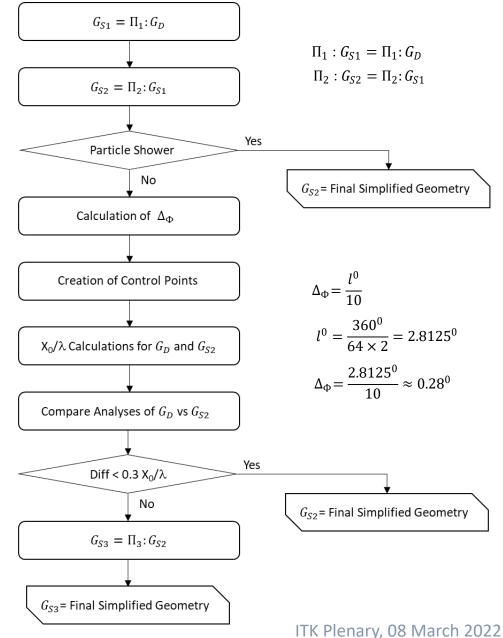

• Finding the Transition points

a

$$C = \forall_i (t_i \neq t_{i+1} \land \varphi_{(t_i)} = const \lor m_i \neq m_{i+1}$$
$$P_{\Sigma} = \sum_{i=1}^{n} \sum_{j=1}^{ij} P_{ik}(\Phi)$$

$$\sum_{i=1}^{k} \sum_{k=1}^{k}$$





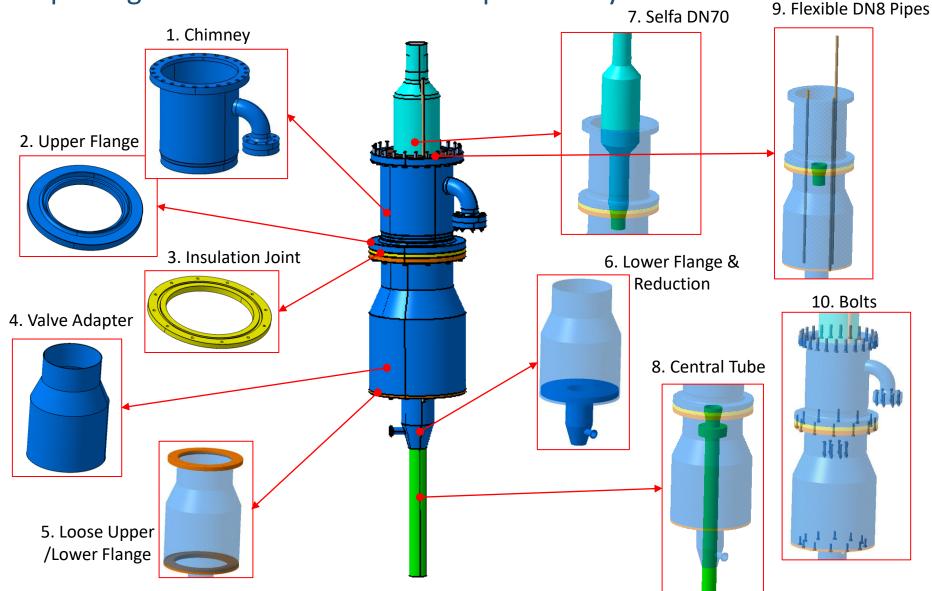
ITK Plenary, 08 March 2022

Criteria of Simplification

$$C_{\Pi} = \forall ((M = const \land V = const) \lor (L_{Xo} = const \lor L_{\lambda} = const))$$

Life Cycle

Development of the Simulation Geometry in the CATIA

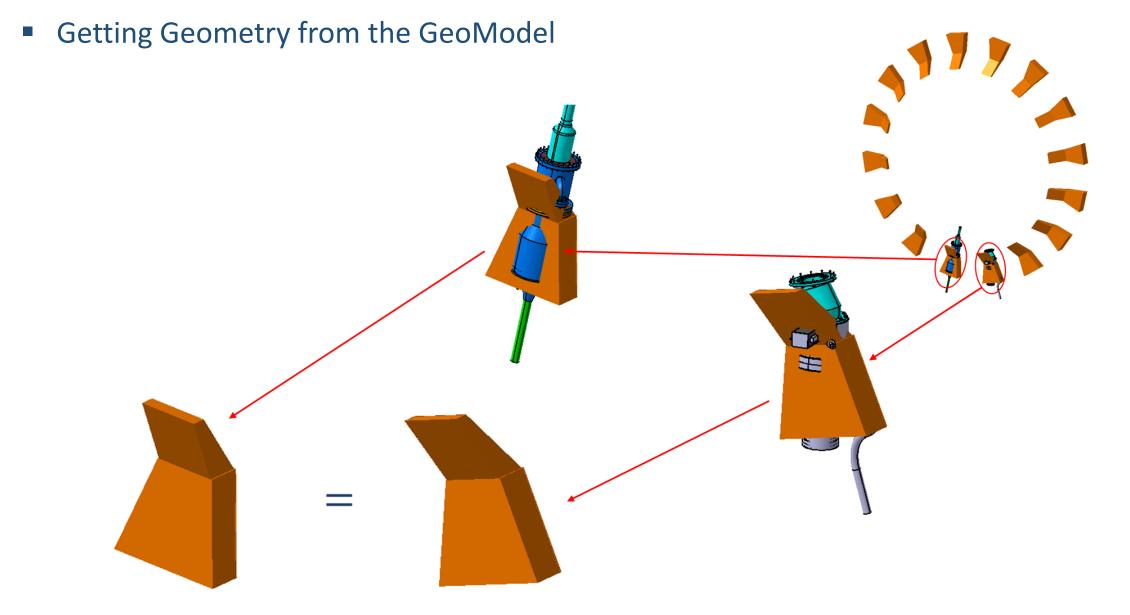

	Step	Output
1	Dump geometry from the SmarTeam	3D Model
2	Reproduction of the SmarTeam Geometry	3D Model; Technical Report
3	Dump Geometry from the GeoModel	3D Model
4	Compare analysis	Technical Report
5	Radiation Analyses - CATIA Detailed vs. GeoModel	Technical Report
6	Simplification of Geometry	3D Model; Technical Report
7	Radiation Analyses - CATIA Detailed vs. CATIA Simplified	Technical Report
8	Conflicts Checking	Technical Report
9	Modification of Geometry	3D Model
10	Preparation of AGDD/XML Description	XML file
11	Upload results on GitLab	Summary: 5 Models; 6 Technical reports; 1 XML file

Case Study : LA Dump Valve Analyses

Reproduction of the Geometry SmarTeam Vacuum Vacuum and **Liquid Argon Liquids Volumes** Don't Exist Information from Caroline **Argon Gas** the inside is detailed on -D ATLABOFC 0012 laterial: Unknown 3 Odump value chimney **Helium Gas** 2 Dump value adapter Volume 2 Material: Unkno liquid argon & Volume1 = 3 fires - 2 are full with heling gas 1 is " " argon gas

Geometry after the Reproduction

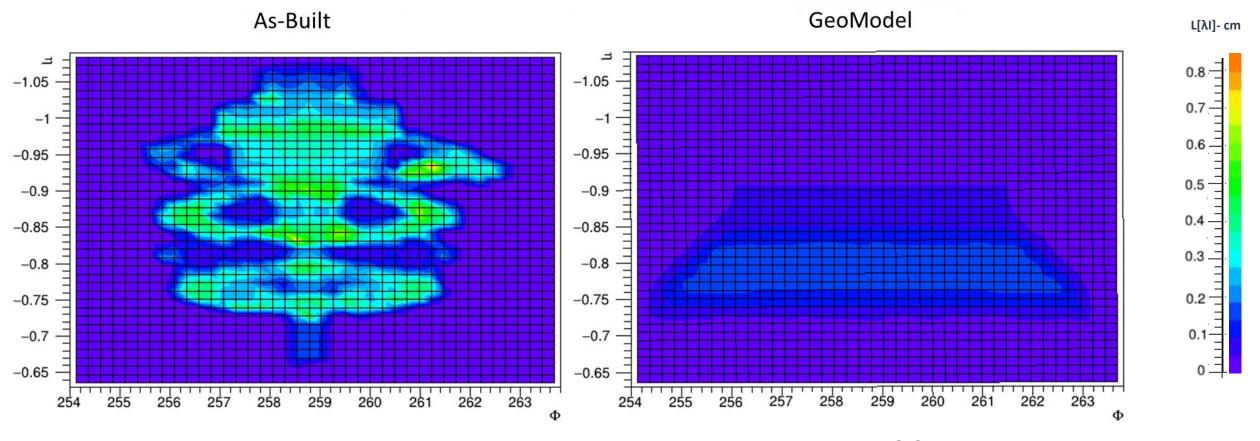
Splitting the Structure for the Compare Analyses



11. Vacuum and Liquids

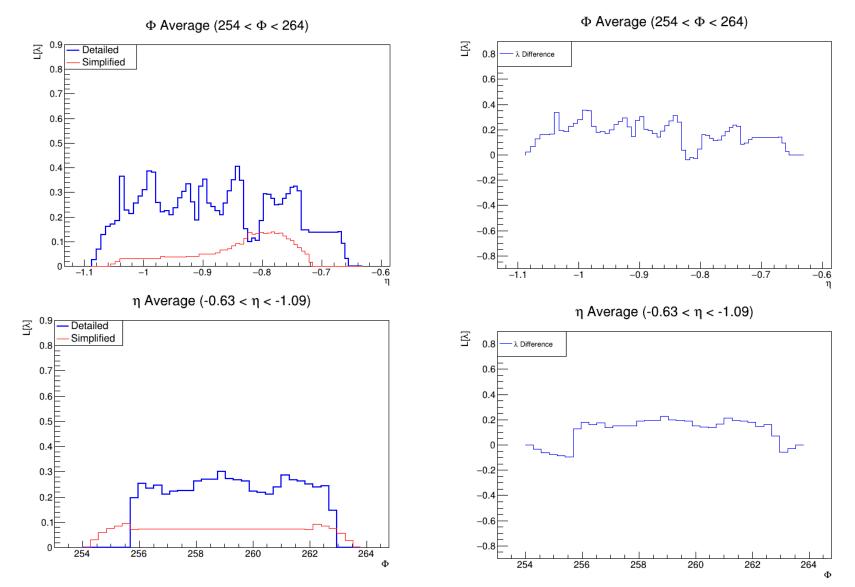
ITK Plenary, 08 March 2022

Case Study : LA Dump Valve Analyses

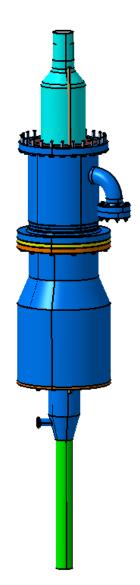

Compare Analyses of Mass Properties

				<u>As-Built</u>
#	Name	material	Volume	Weight
1	Chimney	Stainless Steel	0.001587	12.5
2	Upper Flange	Stainless Steel	0.001257	9.9
3	Insulation Joint	Polycarbonate	0.000595	0.6
4	Valve Adapter	Stainless Steel	0.001417	11.2
5	Loose Upper/Lower Flange	Stainless Steel	0.001537	12.1
6	Lower Flange & Reduction	Stainless Steel	0.001966	15.5
7	Selfa DN70	Stainless Steel	0.00142	11.2
8	Central Tube	Stainless Steel	0.000759	6
9	Flexible DN8 Pipes	Stainless Steel	0.000179	1.4
10	Bolts	Stainless Steel	0.000327	2.6
11	Vacuum and Liquids	Vacuum Liquid Argon Argon Gas Helium Gas	0.04607 0.010675 0.000099 0.00015	 14.9 0.00016 0.000025
		Total:	0.022	98

GeoModel

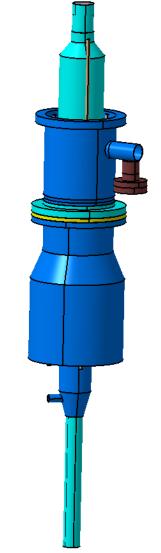

name	material	Volume (m3)	
		volume (m5)	Mass (kg)
Base Envelope	LArServices8	0.067	23.5
Base Plate	Aluminum	0.0027	7.3
Bridge Envelope	LArServices8	0.0228	8
		Total:	40
	_		
Diff: -59 kg		ITK Plenary. 08	March 2022
	Base Plate Bridge Envelope	Base Plate Aluminum Bridge Envelope LArServices8	Base Plate Aluminum 0.0027 Bridge Envelope LArServices8 0.0228 Total:

Compare Analyses of Radiation Length

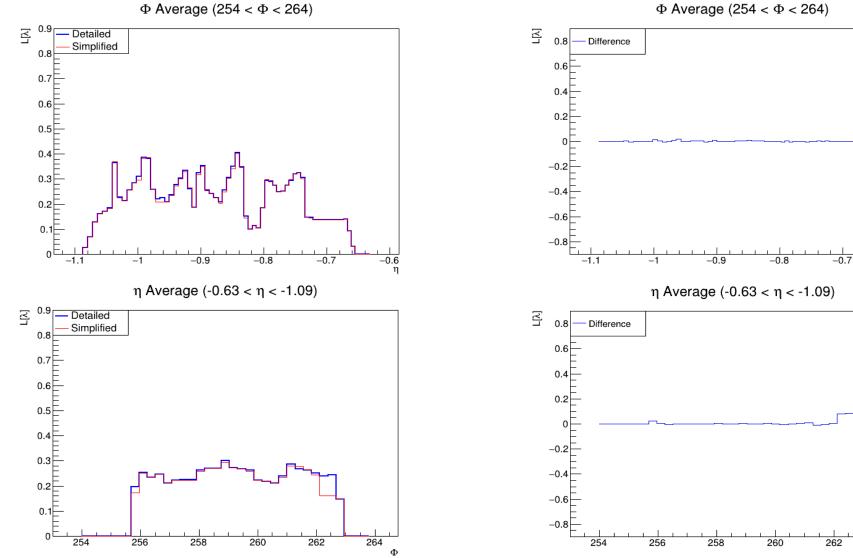

Z = 3.07m

Compare Analyses of Radiation Length

ITK Plenary, 08 March 2022


Simplification of Geometry

#	Name	Volume	Weight	
1	Chimney	0.001587	12.5	
2	Upper Flange	0.001257	10	
3	Insulation Joint	0.000595	0.6	
4	Valve Adapter	0.001417	11.2	
5	Loose Upper/Lower Flange	0.001537	12.1	
6	Lower Flange & Reduction	0.001966	15.5	
7	Selfa DN70	0.00142	11.2	
8	Central Tube	0.000759	6	
9	Flexible DN8 Pipes	0.000179	1.4	
10	Bolts	0.000327	2.6	
11	Vacuum and Liquids	0.010675	15	
	Total:	0.022	98	
77 parts				

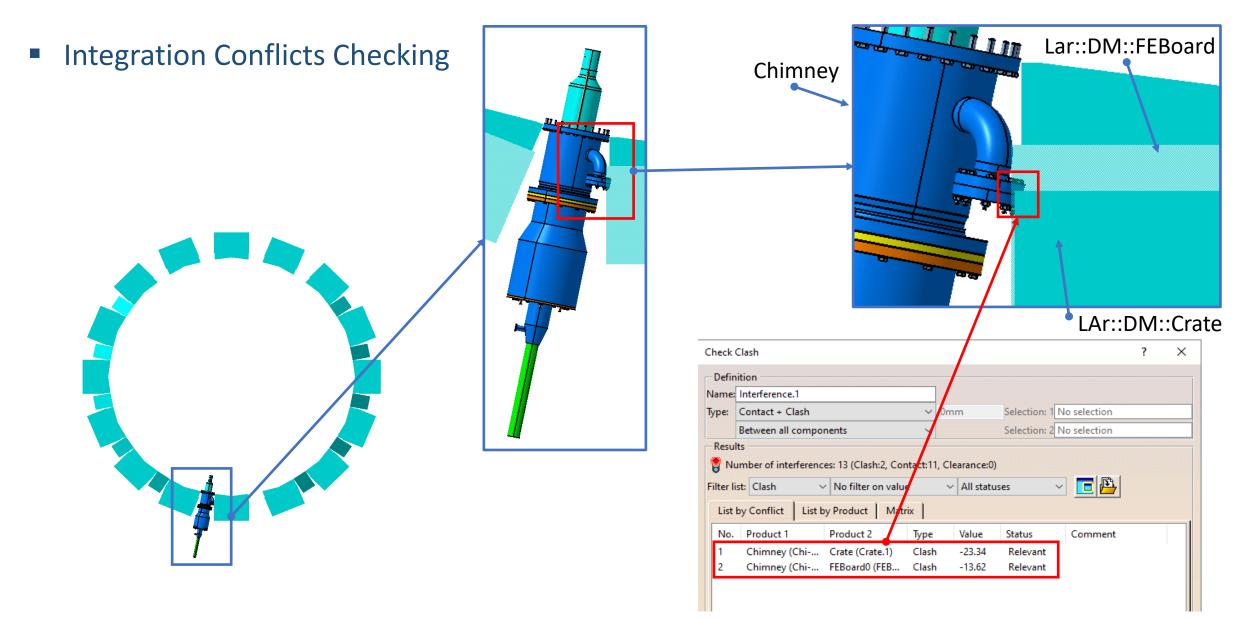

#	Name	Volume	Weight	
1	Chimney			
2	Upper Flange	0.00306	24.1	
10	Bolts			
3	Insulation Joint	0.000595	0.6	
4	Valve Adapter			
5	Loose Upper/Lower Flange	0.003027	23.8	
10	Bolts			
6	Lower Flange & Reduction	0.001966	15.5	
7	Selfa DN70			
8	Central Tube	0.002216	17.4	
10	Bolts			
9	Flexible DN8 Pipes	0.000179	1.4	
11	Volume of Liquid Argon	0.010675	14.9	
	Total:	0.022	98	
14 parts				
_				

Diff: 0

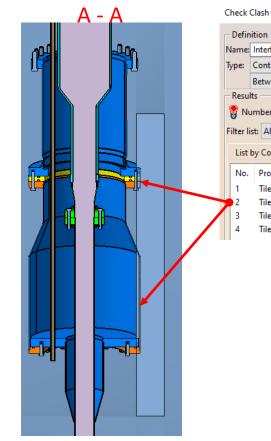
¹⁵

Simplification of Geometry

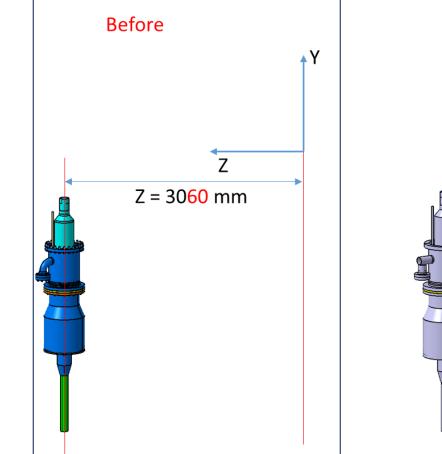
 Φ Average (254 < Φ < 264)

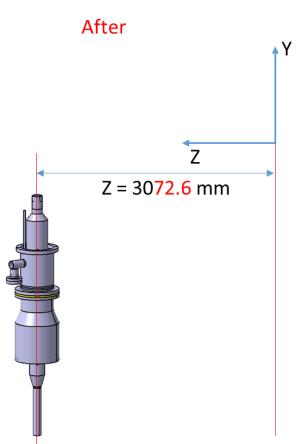

ITK Plenary, 08 March 2022

-0.6 n


264

Φ


Case Study : LA Dump Valve Analyses



Integration Conflicts Checking

Definition Name: Interference.1 Type: Contact + Clash ✓ 0mm Selection: Between two selections Selection: 2 Results Number of interferences: 4 (Clash:4, Contact:0, Clearance:0) Filter list: All types No filter on value ✓ All statuses List by Product Matrix List by Conflict No. Product 1 Product 2 Type Value Status TileCentralBarr... Upper Flange (... Clash -12.25 Relevant TileCentralBarr... Loose Upper/L... Clash -12.25 Relevant TileCentralBarr... Valve Adapter, ... Clash -12.25 Relevant TileCentralBarr... Insulation Join... Clash -12.25 Relevant

XML Coding

```
(composition name="LAr Battle" >
               <posXYZ volume="Baf_Outer" X_Y_Z=" 0. ; 0.; 0." rot=" 0.; 0. ; 0." />
               <posXYZ volume="Baf Top" X_Y_Z=" 0. ; 0.; 95.01" rot=" 0.; 0. ; 0." />
              <posXYZ volume="Baf Bot" X_Y_Z=" 0. ; 0.; -95.01" rot=" 0.; 0. ; 0." />
              <posXY2 volume="Baf_Inner" X_Y_Z=" 0. ; 0.; 0." rot=" 0.; 0. ; 0." />
              <posXYZ volume="Baff ConnPl" X_Y_Z=" 0. ; 0.; 93.2" rot=" 0.; 0. ; 0." />
           :/composition>
           (!-- End Baffle -->
          :!-- Diffusion Pump -->
          (tubs name="Diff_MainTube" material="SSteel" Rio_Z="106.5; 109.5; 455." nbPhi="36"/>
          (tubs name="Diff TopTube" material="SSteel" Rio Z="107.; 118.25; 5." nbPhi="36"/>
         (tubs name="Diff BotTube" material="Ssteel" Rio Z="0.; 106.49; 5." nbPhi="36"/>
         (tubs name="Diff MainTubeCut" material="SSteel" Rio Z="0.; 21.; 227.4" nbPhi="20"/>
        (subtraction name="Diff MainSbtr" >
           <posXYZ volume="Diff MainTube" />
          <posXY2 volume="Diff MainTubeCut" X Y Z=" 181.44; 0.; -31.55" rot=" 0.; 60.; 0." />
       (/subtraction>
      (tubs name="Diff SideTubePos" material="SSteel" Rio Z="21.; 24.; 227.22" nbPhi="20"/>
      (tubs name="Diff SideTubePosCut" material="SSteel" Rio Z="0.; 109.53; 80." nbPhi="20"/>
      (subtraction name="Diff SideTube" >
        <posXYZ volume="Diff SideTubePos" X Y Z=" 181.44; 0.; -31.55" rot=" 0.; 60.; 0."/>
        <posXYZ volume="Diff SideTubePosCut" X Y Z=" 0.; 0.; -80." rot=" 0.; 0.; 0."/>
     {/subtraction>
    (union name="LAr Diffusion PumpUn" >
      <posXYZ volume="Diff MainSbtr" X Y Z=" 0.; 0.; 0.; vot=" 0.; 0.; 0.; 0."/>
     <posXYZ volume="Diff TopTube" X Y Z=" 0.; 0.; 225." rot=" 0.; 0.;0."/>
  :/union>
 (composition name="LAr Diffusion Pump Outer" >
    <posXYZ volume="LAr Diffusion PumpUn" X Y Z=" 0. ; 0.; 0." rot=" 0.; 0. ; 0." />
   <posXYZ volume="Diff BotTube" X Y Z=" 0.; 0.; -225." rot=" 0.; 0.;0."/>
   <posXYZ volume="Diff sideTube" X Y Z=" 0. ; 0.; 0." rot=" 0.; 0. ; 0." />
(/composition>
```

256 Programing strings

Project overall parameters			
Started	2 April, 2021		
Involved manpower	2FTE		
Number of task executed	17		
Working days spent	39		

- 1. Using CATIA enables to bring as-built geometry descriptions for the Simulation
- 2. It is possible to investigate current GeoModel/XML descriptions for consistency to the as-built descriptions
- 3. The radiation analyses in CATIA brings the opportunity to deliver on the early stage of Geometry development accurate geometries for the simulation
- 4. Past 14 projects for the Muon system and 7 projects for the Tile Calorimeter system of Compare analyses showed big differences between GeoModel/XML descriptions and as-built descriptions
- 5. We are ready to bring our knowledge and expertise in order to deliver accurate and efficient geometries for the ITK

Thanks for the Attention!

მადლობთ ყურადღებისათვის!

Questions & Discussion