

VISUALISATION OF TILECAL BY WEBGL API

SHARMAZANASHVILI Alexander Georgian Technical University

PATARIDZE Lasha KHELASHVILI Levan UDZILAURI Nikoloz KOBAKHIDZE Shota Georgian Technical University

https://indico.cern.ch/event/824267/

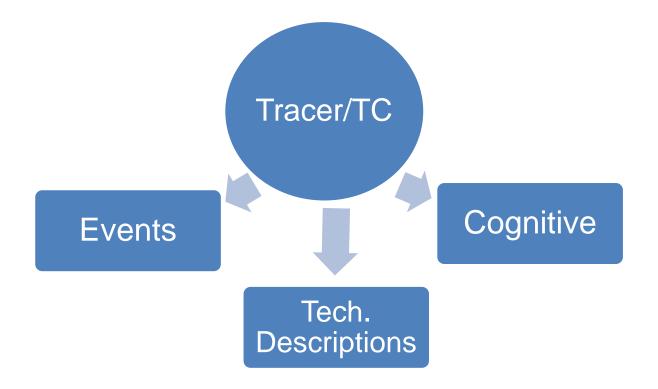
TileCal Week Computing, CERN 14 June, 2019

About the Project

- This project is inside the collaboration agreement between ATLAS and Georgian Technical University, Tbilisi, Georgia – AA366/10add5-2019, Working Package #04
- We are working together with ATLAS TileCal team contact person Alexander SOLODKOV
- All manpower involved in this project is funded by the Georgian Technical University

 $\underline{WP4:}$ "Development of Interactive Detector Display Software Application for Visualisation and Maintenance of Detector Subsystems"

Interactive Detector Display (IDD) is web-based internet application for interactive visualization of structure and detailed content of detector subsystems and physical events carrying out on that.


Application is hardware/software platform independent and requires no installation for running. Generic version of application with basic functionalities and generic geometries is already developed and available from here: http://tracer.web.cern.ch

On the second phase of development customization of generic version on Tile Calorimeter requirements will be done. Short todo list includes visualization of – cells; energy deposits in cells for reconstructed ATLAS events with various options of filtering; Tile Calorimeter components; services in particular regions.

Deliverables: Javascript applications and functions <u>Contact person from ATLAS</u>: Alexander SOLODKOV <u>Manpower from GTU</u>: 2FTE/<u>Javascript</u> programmer

About Tracer/TC

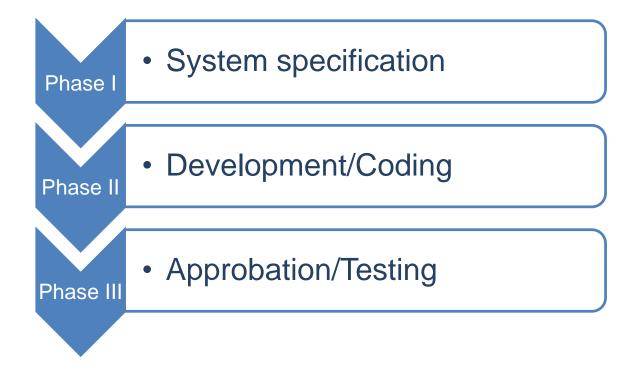
- We call Api Tracer/TC and it will be an Interactive Detector Display software application especially developed for Tile Calorimeter
- Main functionality will cover 3 directions:

Concept

- Application will be platform independent and workable on all types of desktop PC's, notebooks and tablets/phones
- It will be compatible with Windows, Mac-OS, Linux and Android
- Will requires no Installation just Click-And-Go and will be accessible in Browser
- All these benefits are coming from WebGL/Three.js we are going to use as an development platform

- However as gaming engine WebGL has its limitations, especially in performance and visualization of complex geometries
- So our goal is to find agreement between system requirements and limitations of platform

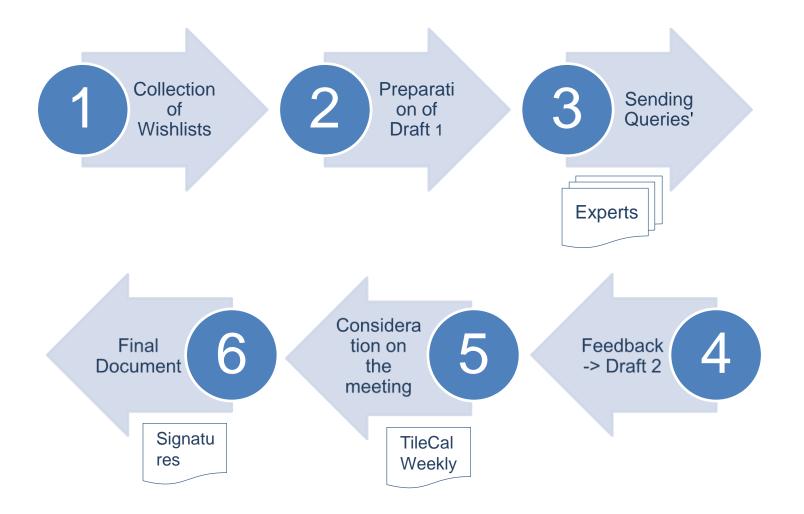
Concept


- WebGL <u>advantages</u> we are looking for:
 - Well developed visualization scenes
 - Realistic and high performed rendering
 - Open and fast-growing platform
 - Built-in libraries for browsers
- WebGL <u>disadvantages</u> for us:

- Poor performance for complex geometries as we have in ATLAS detector
- Low performance for exported non-native scenes
- Poor geometry cuts for non-native scenes
- Unique ways should be found for the solutions

Development Life Cycle

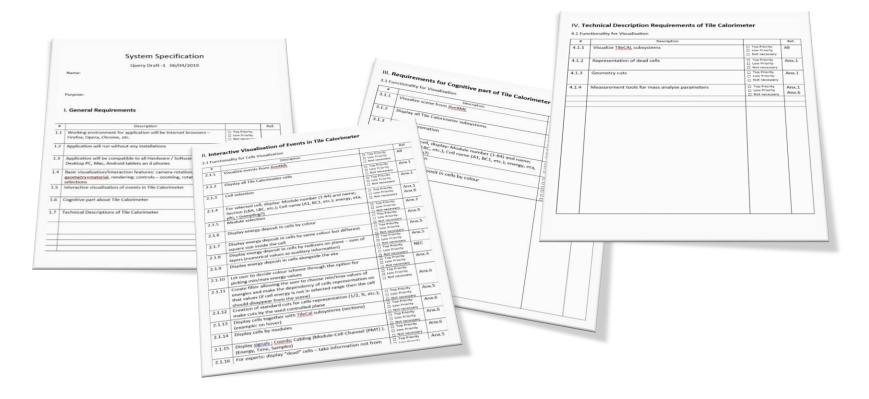
We foresee 3 general phases of development



 Currently we are doing paper work (everybody hate it but this is most important part for success)

- Thanks to TileCal experts Oleg, Sanya, Pawel, Irakli, Henric, Yosef to contribute in this process
- We have very successful visit here at CERN of Lasha PATARIDZE, member of our group, thanks to TileCal collaboration to make it possible
- We have collected 9 packages with wish lists and become quite good experts of TileCal ⁽²⁾

Steps to be done in this direction:

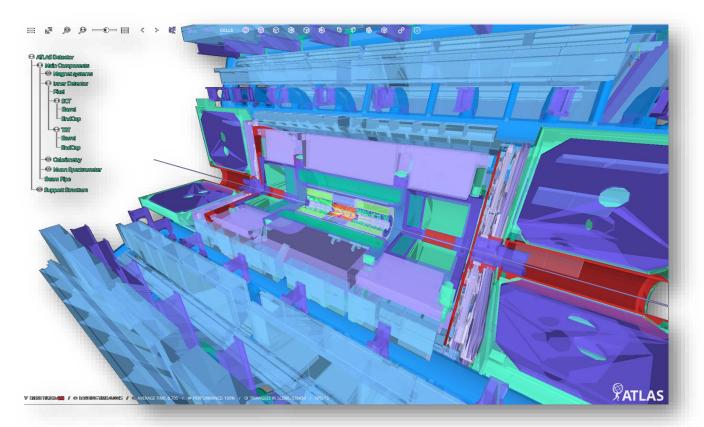

- For the moment we are close to generate Draft 1
- We have squeezed 9 wish lists from Oleg, Sanya, Pawel, Irakli, Henric, Yosef, etc. and cast system specifications
- We separate 4 categories:
 - 1. General requirements
 - 2. Interactive visualization of events
 - 3. Cognitive requirements
 - 4. Technical Description specifications
- For events we have 3 subgroups:
 - 1. Cell visualization requirements
 - 2. Tracks visualization requirements
 - 3. Jets visualization requirements

II. Interactive Visualisation of Events in Tile Calorimeter

2.1 Functionality for Cells Visualisation

#	Description		Ref.
2.1.1	Visualize events from <u>JiveXML</u>	Top Priority Low Priority Not necessary	All
2.1.2	Display all Tile Calorimeter cells	Top Priority Low Priority Not necessary	Anx.1
2.1.3	Cell selection	Top Priority Low Priority Not necessary	Anx.1
2.1.4	For selected cell, display: Module number (1-64) and name; Section (LBA, LBC, etc.); Cell name (A1, BC1, etc.); energy, eta, phi, r (sampling?)	Top Priority Low Priority Not necessary	Anx.1 Anx.6
2.1.5	Module selection	Top Priority Low Priority Not necessary	Anx.2
2.1.6	Display energy deposit in cells by colour	Top Priority Low Priority Not necessary	Anx.5
2.1.7	Display energy deposit in cells by same colour but different square size inside the cell	Top Priority Low Priority Not necessary	Anx.5
2.1.8	Display energy deposit in cells by radiuses on plane – sum of layers (numerical values as auxiliary information)	Top Priority Low Priority Not necessary	Anx.5
2.1.9	Display energy deposit in cells alongside the eta	Top Priority Low Priority Not necessary	NEC
2.1.10	Let user to decide colour scheme through the option for picking min/max energy values	Top Priority Low Priority Not necessary	Anx.3
2.1.11	Create filter allowing the user to choose min/max values of energies and make the dependency of cells representation on that values (if cell energy is not in selected range then the cell should disappear from the scene)	Top Priority Low Priority Not necessary	Anx.6
2.1.12	Creation of standard cuts for cells representation (1/2, ¼, etc.); make cuts by the used controlled plane	Top Priority Low Priority Not necessary	Anx.5
2.1.13	Display cells together with <u>TileCal</u> subsystems (sections) (example: on hover)	Top Priority Low Priority Not necessary	Anx.6
2.1.14	Display cells by modules	Top Priority Low Priority Not necessary	Anx.6
2.1.15	Display <u>signals</u> : <u>Coords</u> ; Cabling (Module-Cell-Channel {PMT}). (Energy, Time, Samples)	Top Priority Low Priority Not necessary	Anx.6
2.1.16	For experts: display "dead" cells – take information not from <u>liveXML</u> but from other sources (?)	Top Priority Low Priority Not necessary	Anx.5
2.1.17	Display what : Energy, Time or Energy+Time	Top Priority Low Priority	Anx.5

 For the moment we have number of requirements as follow: General requirements (7), Events visualization (34), cognitive requirements (6) and technical specifications (4)

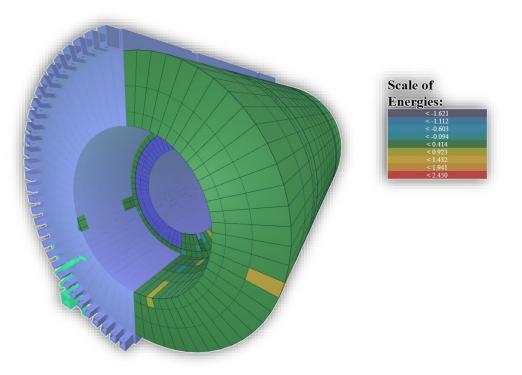


II. Development/Coding

- We bit pushing development steps as well
- System core engine on the base of WebGL almost ready

http://cadcamge.ch/at/r3.2

* This is development folder with bugs



II. Development/Coding

We did generic system prototype

http://cadcamge.ch/at/TileCal

* This is development folder with bugs

 We are revising all our algorithms for Track/Jet visualization from JiveXML

Upcoming Steps:

- 1. Finish Draft-1 and sending queries to experts (next week)
- 2. Collecting Feedbacks and produce Draft-2 (end of June, 2019)
- Preparation of final document of system specification (July, 2019)
- 4. Preparation of business plan for development (July, 2019)
- 5. Starting of Development/Coding (September, 2019)

Thanks for attention,

Comments are welcome

Lasha.sharmazanashvili@cern.ch

TileCal Week Computing, CERN 14 June, 2019