Development of CATIA_2_GEANT Interface for Simulation of High Energy Physics Experiments

SHARMAZANASHVILI Alexander ATLAS Collaboration

TSUTSKIRIDZE Nikoloz Georgian Technical University

- GEANT is a platform for simulation of facilities and physical events by modelling of the passage of particles through the matter
- GEANT implementing in High Energy, nuclear and Accelerator physics as well for studies in medical and in space science

LHC Machine at CERN

ATLAS Detector length ~40 m, height ~22 m, weight ~7'000 tonnes

CMS Detector length ~22 m, height ~15 m, weight ~14'000 tonnes

ALICE Detector

LHCB Detector

Overall view of the LHC experiments.

ATLAS Experiment

 ATLAS implements simulation for deep and wide range investigation of physics experiments by generating artificial events from the event generator in a format which is identical to the output of the detector data acquisition system

ATLAS Experiment

Problem of Data Discrepancy

Analyze & Compare

Research Hypothesis

- Several reasons can cause discrepancies between Data and Monte-Carlo. Several investigations show that they are coming by the reason of geometry descriptions in simulation
- It is possible to predict 2 hypothesis why faults are exist in geometry descriptions:
 - <u>Hypothesis #01</u>: Inaccuracies added by geometry transactions of simulation software infrastructure
 - <u>Hypothesis #02</u>: Inaccuracies added by difference of as-built geometry descriptions with geometry descriptions of simulation

Geometry Simulation Loop

Checking Hypothesis 01:

Investigation of Simulation Infrastructure

Investigation of Simulation Infrastructure

- ATLAS simulation infrastructure use 3 platforms for description of detector geometry: GEANT, GeoMODEL and XML.
- Geometry descriptions on GEANT and GeoMODEL are generating at run-time during the simulation session, while XML descriptions stored in database

XML Platform

Standard Primitives and Polygon Methods

- Transactions: Move, Rotate
- Boolean Operations: Subtraction, Union, Intersection

Persint Screenshot

GeoMODEL Platform

Standard Primitives and Polygon Methods

- Transactions: Move, Rotate
- Boolean Operations: Subtraction, Union, Intersection

Code Example for Pyramid with cut 129 130 GeoTrd * Trapezoir_Pr = new GeoTrd(2000.*CLHEP::mm, 1000.*CLHEP::mm, 2500.*CLHEP::mm, 1250.*CLHEP::mm, 1500.*CLHEP::mm); 131 1250.*CLHEP::mm, 1500.*CLHEP::mm); 132 GeoTube * Tube = new GeoTube(0.*CLHEP::mm, 900.*CLHEP::mm, 2600.*CLHEP::mm); 133 const GeoShape & ExampleN55_subtr = Trapezoir_Pr->subtract((*Tube)); 135 GeoLogVol* ExampleN55_Log = new GeoLogVol(*ExampleN55", & ExampleN55_subtr, Aluminium); 137 GeoPhysVol* ExampleN55_Log_Phis = new GeoPhysVol(ExampleN55_Log); 138

VP1 Screenshot

GEANT-4 Platform

Standard Primitives and Polygon Methods

- Transactions: Move, Rotate
- **Boolean Operations: Subtraction, Union, Intersection**

Tools and Methods of Competitive Engineering, 11 May 2016

OpenGL Screenshot

Geometry Transformations

Investigation quality of T1/T2 geometry Transformations

Methodology of Analyses

- 1. Categorization of geometry of Detector components
- 2. Selection Methods for description
- 3. Test runs of test examples
- 4. Case study of transactions
- 5. Systematization and learning of results

- Total number of Mechanical assemblies
 > 3'700
- Total number of Mechanical features
 > 10'000'000
- Disk size of geometry 62Gb

- Purpose of categorization is finding groups of detector components similar by geometry and identification of typical group representatives.
- **3 criteria** can be implemented for categorization of detector geometry:
 - Correspondence of detector components to standard geometry primitives – shapes with vertex; shapes without cuts; both, regular and irregular shapes; both, convex and concave shapes
 - 2. Grouping components with typical joining's
 - 3. Grouping components with cuts

22 typical primitives have been separated in 1st class of objects

29 combined objects with typical joining's have been found for 2nd class

Tubes Joining

3. 33 objects with cuts were separated for 3rd class

<u>*Conclusion:*</u> ATLAS detector geometry can be described by 84 typical representors of class of objects

n & Dead olumes	Geometry Primitives	19	Total		
	Typical Joining	13	58		
onM V	Combined Objects	26			
Active Volumes	Geometry Primitives	3	Total:		
	Typical Joining	16	26		
	Combined Objects	7			

84 typical representors of class of objects

Several Methods can be implemented for description of one single object

Finally, for all above selected typical representatives of object classes of ATLAS detector, full set of possible methods of description were selected:

1st class of 22 objects: 4'460 methods

2nd class of 22 objects: 4'636 methods

3rd class of 33 objects: 6'579 methods

Total: 15'675 methods

<u>**Criteria #01**</u>: *Arbitrary_polygon* method should be separated as a standalone method, while

- 1. Geometry description requires minimal number of Boolean operations and Move/Rotation transactions
- 2. Geometry can be described directly in position by only Z axis displacement and Z axis rotation.

Example: Descriptions of Octadecagonal Prism

Conclusion: Exclude Methods II and III

<u>Criteria #02</u>: Minimization of number of used methods in description

- 1. Ensure compactness of code
- 2. Reduce number received clashes, contacts and inaccuracies of positioning
- 3. Ensure better performance by reducing number of regions for consideration during the tracking

Example: Descriptions of Cube with Cut

Conclusion: Exclude Method II

<u>Criteria #03</u>: Exclude descriptions which are using same transactions and methods

Example: Descriptions of Dodecagonal Prism with Cuts

Ι.	П.
Arbitrary	Symmetric
Tube	Tube
Rotation	Rotation
Move	Move
Subtraction	Subtraction
Rotation	Rotation
Move	Move
Subtraction	Subtraction
Move (Z)	Move (Z)
Rotation	Rotation

Conclusion: Either I or II should be excluded

<u>Criteria #04</u>: Exclude descriptions with same consequence of methods

Example: Descriptions of Icositetrahedronal prism with cuts

Icositetrahedronal Prism with Cuts

Conclusion: Either I or II should be excluded

- Ι. Cube Symmetric Move Subtraction Move Subtraction Arbitrary Subtraction Tube Move Subtraction Cube Move Subtraction Tube Move Subtraction
- 11.

Pyramid Symmetric Move Subtraction Move Subtraction Arbitrary Subtraction Tube Move Subtraction Cube Move Subtraction Tube Move Subtraction

 Total number of methods has been analysed and just unique cases of descriptions were selected:

<u>Conclusion</u>: 78 unique examples have been formed for the investigation of quality of geometry transformations doing by simulation software.

Part III. Test Runs

			70 Test	Г	Circulat		51 cases with faults				
			78 lest		Simulat	ion					
			Examples	1	Loop			_			
			Examples	L	2009		27 cases				
							without faults				
#	TestExample N	Inaccuracies	Comment	27	27	Yes	Maximal Inaccuracy 0.12 mm	53	53	No	
1	1	Yes	Maximal Inaccuracy 0.23 mm	28	28	Yes	Maximal Inaccuracy 0.12 mm	54			
2	2	Yes	Maximal Inaccuracy 0.03 mm	29	29	Yes	Maximal Inaccuracy 0.05 mm	55	54	No	
3	3	No	that that can acy or 5 min	30	30	Yes	Maximal Inaccuracy 0.03 mm	56	55	Yes	Maximal Inaccuracy 0.08 mm
4	4	Yes	Maximal Inaccuracy 0.51 mm	31	31	Yes	Maximal Inaccuracy 0.03 mm	57	56	Yes	Maximal Inaccuracy 0.03 mm
5	5	No	-	32	32	Yes	Maximal Inaccuracy 0.06 mm	58	58	No	,
6	6	Yes	Maximal Inaccuracy 0.2 mm	33	33	Yes	Maximal Inaccuracy 0.06 mm	59	59	No	
7	7		-	34	34	Yes	Maximal Inaccuracy 0.01 mm	60	60	No	
8	8	Yes	Maximal Inaccuracy 0.01 mm	35	35	Yes	Maximal Inaccuracy 0.01 mm	61	61	No	
9	9	Yes	Maximal Inaccuracy 0.01 mm	36	36	Yes	Maximal Inaccuracy 0.01 mm	62	62	No	
10	10	Yes	Maximal Inaccuracy 0.03 mm	37	37	Yes	Maximal Inaccuracy 1.52 mm	63	63	Yes	Maximal Inaccuracy 0.12 mm
11	11	Yes	Maximal Inaccuracy 0.09 mm	38	38	Yes	Maximal Inaccuracy 0.03 mm	64	65	No	
12	12	Yes	Maximal Inaccuracy 0.09 mm	39	39	Yes	Maximal Inaccuracy 0.04 mm	65	66	Yes	Maximal Inaccuracy 0.01 mm
13	13	Yes	Maximal Inaccuracy 0.04 mm	40	40	Yes	Maximal Inaccuracy 0.14 mm	66	67	No	
14	14	Yes	Maximal Inaccuracy 0.05 mm	41	41	Yes	Maximal Inaccuracy 0.14 mm	67	68	No	
15	15	Yes	Maximal Inaccuracy 0.01 mm	42	42			68	69	No	
16	16	Yes	Maximal Inaccuracy 0.03 mm	43	43	No		69	70	No	
17	17	Yes	Maximal Inaccuracy 0.04 mm	44	44	Yes	Maximal Inaccuracy 0.01 mm	70	71	Yes	Maximal Inaccuracy 0.38 mm
18	18	Yes	Maximal Inaccuracy 0.19 mm	45	45	Yes	Maximal Inaccuracy 0.01 mm	71	72	No	
19	19	Yes	Maximal Inaccuracy 0.06 mm	46	46			72	73	No	
20	20	Yes	waximal inaccuracy 0.15 mm	47	47	No		73	74	No	
21	21	NO	Maximal Inaccuracy 0.02 mm	48	48	No		74	75	Yes	Clash 0.89 mm
22 32	22	Vos	Maximal Inaccuracy 0.03 mm	49	49			75	76	Yes	Clash 2.27 mm
23	23	Ves	Inaccuracies on the X and X 7 aves	50	50	No		76	77	Yes	Clash 0.04 mm
25	25	Yes	Maximal Inaccuracy 0.18 mm	51	51	Yes	Maximal Inaccuracy 1.05 mm	77	78	No	
26	26	Yes	Maximal Inaccuracy 0.19 mm	52	52	No		78	79	No	

T1: XML->GeoMODEL transformation T2: GeoMODEL->GEANT-4 transformation

: 43 cases

: 8 cases

Tools and Methods of Competitive Engineering, 11 May 2016

33-102

Part IV. Case Study of Transactions

IV. Case Study of Transactions

- Further investigations have done in order to understand reasons which caused inaccurateness
- Geometry transactions *move/rotation* and *Boolean* operations were considered separately and together to discover any kind of correlations between them

IV. Case Study of Transactions

Sub-Case #01: $\Pi 2/\Pi 4$ movement of A and B center points of auxiliary tubes along Y axis from origin

Results: There are no inaccuracies
Sub-Case #02: $\Pi 2/\Pi 4$ movement together with Boolean subtractions

Results:

		GeoM Δ_1	G-4 Δ ₂	Total ∆
	x	0.03	0	0.03
А	у	0.02	0.2	0.22
	Ζ	0	0	0
	x	0.03	0	0.03
В	у	-0.02	0.1	0.08
	Ζ	0	0	0
	RI	0	-0.19	-0.19
	R2	0	0.1	0.1
Volum	e	-0.0005	0.0004	-0.0001

Sub-Case #03: Π 7 rotation together with Π 2/ Π 4 movement and Π 1/ Π 3 subtractions

	Cube
	Cube
Π1	Subtraction
	Tube
П2	Move
П3	Subtraction
П4	Move
П5	Subtraction
П6	Move
Π7	Rotation

<pre>Cqmwi_name="Boot" material="Aliminium" d2="250."> Cqmwi_name="Boot" material="Aliminium" d2="250."> Cqmwi_name X_1="-200.:=4847."/> Cqmwi_name X_1="200.:=5071."/> Cqmwi_name="Boot" material="Aliminium" d2="270."> Cqmwi_name="Boot" material="</pre>	
<pre></pre>	
<pre>(qrw_point %_Y**200.; -3707.*/> (qrw_point %_Y**200.; -3707.*/> (qrw_point %_Y**200.; -6947.*/> (qrw_point %_Y**200.; -6947.*/> (qrw_point %_Y**240.; -6977.*/> (qrw_point %_Y***0.0.; 0.; 0.; cot** 0.; 0.; 0.*/) (qosXI2 volme**WestBaseDeN25 > (qosXI2 volme**WestBaseDeN25 > 2027.; 0.* cot** 0.; 0.; 0.*/) (qosXI2 volme**West %_Y*** 0.; 0.; 0.; cot** 0.; 0.; 0.; (qrw_point)) </pre>	
<pre>grow_point X_Y=200.; -3707.*/> growy_point X_Y=200.; -6947.*/> c(growy) cgrowy_mase="Bood" material="Aluminium" d2="270."> growy_point X_Y=-240.: -6977.*/> growy_point X_Y=-240.: -6977.*/> growy_point X_Y=-240.: -6977.*/> (growy) ctubs name="Tubel" material="Aluminium" Rio_Z="0.; 544.5; 300." nDPni="30 cubtraction name="Tubel" X_Y_2="0.0.; 0.; 0." cot="0.; 0.; 0."/> geoXXI volume="Bood" X_Y_2="0.0.; 0.; 0." cot="0.; 0.; 0., */> geoXXI volume="Bood" X_Y_2="0.0.; 0.; cot="0.; 0.; 0., */> geoXXI volume="Bood" X_Y_2="0.0.; 0.; cot="0.; 0.; 0., */> geoXXI volume="Bood" X_Y_2="0.0.; 0.; cot="0.; 0.; 0.; cot="0.; 0.; cot="0.; 0.; 0.; cot="0.; cot="0.; 0.; 0.; cot="0.; cot="0.; 0.; cot="0.; cot="0.;</pre>	
<pre></pre>	
<pre></pre> <pre>c(qvxy) </pre> <pre>cqvxy_max=*Box2* material=*Aluminium* d2**270.*> <pre>cqvxy_point X_V**-240.: -6977.*/> <pre>cqvxy_point X_V**-240.: -607.*/> <pre>cqvxy_point X_V**-240.: -707.*/> <pre>cqvxy_point X_V**-240.: -707.*//> <pre>cqvxy_point X_V**-240.: -707.*//> </pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	
<pre>qyxy_name="Box2" material="Aluminium" d2="270."></pre>	
<pre>cgrwg_point X_1**-240.; -4977.*/> ggrwg_point X_1**-240.; -6977.*/> grwg_point X_1**-240.; -6977.*/> grwg_point X_1**240.; -6977.*/> cfgrwg_point X_1**240.; -6977.*/> cfgrwgy ctube name**Tubel* material*Aliminium* Rid_2**0.; 544.5/ 300.* nbPni**32 csubtraction name**TostBasepieR25*> geoWX1 volume**Not* X_12**0.0.70.* rot** 0.70.70.*(geoWX1 volume**Not* X_12**0.0.70.* rot** 0.70.70.*(geoWX1 volume**Not* X_12**0.0.70.* rot** 0.70.70.*(geoWX1 volume**Not* X_12**0.0.7027.70.* rot** 0.70.70.*(geoWX1 volume**Not* X_12**0.7027.70.* rot** 0.70.70.*(geoWX1 volume**Not*) </pre>	
<pre>qrwg_point X_1************************************</pre>	
<pre>qrwxjpoint X_Y="240.; -6077.*/> qrwxjpoint X_Y=240.; -6077.*/> geoXX2 volme=*Bos2* X_Y_2=*0.0.; 0. * cot=* 0.; 0.; 0. */2 geoXX2 volme=*Bos2* X_Y_2=*0.; -5227.; 0. * cot=* 0.; 0.; 0. */2 (subtraction) </pre>	
<pre>(qrwx_point X_Y==240.; -0977.*/> ctubs name="Tubel" material="Aluminium" Hig_2="0.; 544.5; 300." mbPhi="35 csubtraction name="TestEmanoleHES"></pre>	
<pre>cdpwxys</pre>	
Cubs name**Tubs1* material**Aluminium* Rio_2**0.; 544.5; 300.* mbPni**35 Crubsraction name**TestBaaupleND5* >	
	> 0. =/ 0. =/
<pre>composition name="BCT_Toroids" ></pre>	22.5

Results:

		GeoM Δ ₁	G-4 Δ ₂	Total ∆
	x	0.05	0.09	0.14
А	у	0.01	0.23	0.24
	Ζ	0	0	0
	x	0.01	0.01	0.02
В	у	-0.03	0.02	-0.01
	Ζ	0	0	0
	RI	0	-0.24	-0.24
	R2	0	0.02	0.02
Volum	e			-0.0001

Results:

		$\begin{array}{c} \text{GeoM} \\ \Delta_1 \end{array}$	G-4 Δ ₂	Total ∆
	x	0.03	0.01	0.04
A	у	0.02	0.2	0.22
	Ζ	0	0	0
	х	0.03	0	0.03
В	у	-0.03	0.1	0.07
	Z	0	0	0
	RI	0.01	-0.2	-0.19
	R2	-0.01	0.1	0.09
Volum	e			-0.0001

Sub-Case #05: $\Pi 6$ movement together with $\Pi 2/\Pi 4$; $\Pi 1/\Pi 3$ subtractions and $\Pi7$ rotation

Cube Cube Subtraction Tube Move Subtraction Move Rotation	<pre>Cgrwy name="Box1" material="Aluminium" d2="290."></pre>

Results:

		GeoM ∆ ₁	G-4 Δ ₂	Total ∆
	x	0.03	0	0.03
А	у	0	-0.02	-0.02
	Ζ	0	0	0
	x			0.02
В	у			0
	Ζ			0
	R1	-0.01	0.18	0.17
	R2			-0.03
Volum	e	-0.0005	0.0004	-0.0001

Tools and Methods of Competitive Engineering, 11 May 2016

ш

П2

ПЗ

Π4

П5

П6

П7

Direct Faults have been detected

Example: GeoMODEL Boolean Subtraction failure

					G	ieome	etric Pri	mitives					Tra	nsacti	ons			CATI	A vs GeoN	1odel (V	P1)			(CATIA vs (Geant4		
							GeoN	Nodel																				
	Ex. Nº	Cube	Tube	Pyr	Trap.	Cone	PolyC.	PolyG.	Arbitr.	Sym.	Dsym	М	R	Subt.	М	R	м	R	Subtr.	М	R	Conf	м	R	Subt	М	R	Conf
1	1			ЗX								5X	4X	5X	x	x	0	0	ΔX=0.25 ΔY=-0.15 Δ _V =0.0014	ΔX=-0.02 ΔY=0.01	ΔX=0.07 ΔY=-0.18		0	0	ΔX=0.25 ΔY=-0.15 Δ _V =0.0014	ΔX=-0.02 ΔY=0.01	ΔX=0.06 ΔY=-0.17	
2	2	2X										2X	x	2X	x	x	0	0	ΔY=0.01 ΔZ=-0.02	0	∆X=0.01		0	0	ΔY=0.01 ΔZ=-0.02	∆Z=0.03	ΔX=-0.01 ΔY=-0.02	
3	4	x							x					x	x	x			ΔX=-0.03 ΔY=-0.02	0	ΔX=0.02 ΔY=-0.02 ΔZ=-0.02				ΔX=-0.03 ΔY=-0.02	0	ΔX=0.02 ΔY=-0.02	
4	6	2X										x		x	x	x	0		ΔX=-0.23 ΔZ=-0.13 ΔV=0.0002	0	ΔX=0.03 ΔY=0.1 ΔZ=0.01		0		ΔX=-0.23 ΔZ=-0.13 ΔV=0.0002	ΔZ=0.03	ΔX=0.03 ΔY=0.1 ΔZ=0.01	
5	7	x							x					2X	х	x			ΔX=-0.07 ΔY=-0.05	ΔX=0.01 ΔY=0.05	ΔX=-0.02 ΔY=0.09				ΔX=-0.07 ΔY=-0.05	ΔX=0.01 ΔY=0.05	ΔX=0.04 ΔY=0.09	
6	8	2X										×	x	x	x	x	0	0	ΔZ=-0.01	0	0		0	0	ΔZ=-0.01	0	0	
7	9								2X			2X		2X	x	x	0		0	0	ΔX=-0.01		0		0	0	0	
8	10	3X										4X		4X	x	x	0		ΔX=0.03 ΔY=0.03	ΔX=0.03 ΔY=0.03	ΔX=-0.04 ΔY=-0.02		0		ΔX=0.03 ΔY=0.03	ΔX=0.03 ΔY=0.03	ΔX=-0.04 ΔY=-0.02	
9	11	2X												x	x	x			ΔY=-0.09 ΔZ=-0.06	0	ΔX=0.03 ΔY=0.01				ΔY=-0.09 ΔZ=-0.06	ΔY=-0.01 ΔZ=-0.01	ΔX=0.03 ΔY=0.02	
10	12								2X					×	x	x			ΔX=-0.09 ΔY=-0.06	ΔY=-0.02	ΔX=0.03 ΔY=0.01				ΔX=-0.09 ΔY=-0.06	ΔY=-0.03	ΔX=0.03 ΔY=0.02	
11	13	x	x							x		x		2X	x	x	0		ΔX=0.01 Δ _V =0.0002	ΔX=-0.03 ΔY=-0.02	ΔX=-0.01 ΔY=0.02		0		ΔX=0.01 Δ _V =0.0002	ΔX=0.03 ΔY=-0.03	ΔX=-0.01 ΔY=0.03	
12	14	x	x						x			2X		2X	x	x	0		ΔX=-0.03 ΔY=-0.02 Δ _V =0.0002	0	ΔX=-0.01 ΔY=0.02		0		ΔX=-0.03 ΔY=-0.02 Δ _V =0.0002	0	ΔX=-0.01 ΔY=0.03	
13	15	x		х								x		x	х	x	0		0	0	ΔX=0.01		0		0	0	ΔX=0.01 ΔY=-0.01	
14	16		х						x			x		×	x	x	0		ΔX=-0.03 ΔY=-0.02	0	ΔX=-0.01 ΔY=0.02		0		ΔX=-0.04 ΔY=-0.03	0	ΔX=-0.01 R=0.01	
15	17		2X									2X	2X	2X	x	×	0	0	ΔX=0.04 ΔY=0.02 ΔV=0.002	ΔX=0.01	ΔX=0.02 ΔY=0.03 R=0.01		0	0	ΔX=0.04 R=0.02 ΔV=0.002	ΔX=0.01 ΔY=0.01 ΔZ=0.01	ΔX=0.02 ΔY=0.03 R=0.05	
16	18		2X						x	x		2X		ЗX	x		0		ΔX=-0.11 ΔY=0.19 Δ _V =0.0003	0			0		ΔX=-0.11 ΔY=0.19 R=0.01 Δ _V =0.0003	ΔX=-0.07 ΔY=-0.04 R=0.08		

						eome	tric Pri	mitives					Tra	nsacti	ons			CATI	A vs GeoN	1odel (V	P1)			(CATIA vs (Geant4		
							GeoN	/lodel																				
	Ex. Nº	Cube	Tube	Pyr	Trap.	Cone	PolyC.	PolyG.	Arbitr.	Sym.	Dsym	М	R	Subt.	М	R	М	R	Subtr.	м	R	Conf	м	R	Subt	М	R	Conf
17	19		2X						x			2X		2X	x	x	0		ΔX=0.06 ΔY=0.04 ΔV=0.0003	0	ΔY=-0.03		0		ΔX=0.06 ΔY=0.01 R=0.03 ΔV=0.0003	ΔX=-0.03 ΔY=-0.04 R=0.05	ΔX=0.04 ΔY=0.06 R=0.09	
18	20		2X	x						x		зх	x	зх	x	x	0	0	ΔX=-0.14 ΔY=-0.08 Δ _V =0.0003	ΔX=0.01 ΔY=0.01	ΔX=-0.03 ΔY=0.06		0	0	ΔX=-0.14 ΔY=-0.08 R=0.03 Δ _V =0.0003	ΔX=0.01 ΔY=-0.04 R=0.03	ΔX=-0.03 ΔY=0.06 R=0.01	
19	22		x						x			x		x	x	x	0		ΔX=-0.03 ΔY=-0.02 Δ _V =0.0001	0	ΔY=0.02		0		ΔX=-0.03 ΔY=-0.02 Δ _V =0.0001	0	ΔY=0.02	
20	23		x	×					2X			x	2X	4X	x	x	0	0	ΔX=0.23 ΔY=-0.09 Δ _V =0.0001	0	ΔX=-0.03 ΔY=-0.09		0	0	ΔX=0.23 ΔY=-0.09 Δ _V =0.0001	0	ΔX=-0.03 ΔY=-0.09	
21	24	x	x									x		x	x	x	0		ΔX=-0.02 ΔY=0.01 ΔZ=-0.01	ΔX=-0.01 ΔY=-0.01 ΔZ=-0.01	ΔX=0.02 ΔY=0.01		0		ΔX=-0.02 ΔY=0.01 ΔZ=-0.01	∆X=-0.02	ΔX=0.01 ΔY=0.02	
22	25		x						2X			2X		ЗX	x	x	0		ΔX=0.03 ΔY=0.02 Δ _V =0.0005 R=0.01	0	ΔY=-0.02		0		ΔX=0.03 ΔY=0.21 Δ _V =0.0001 R=0.17	0	ΔY=0.23 R=0.05	
23	26	2X	x									2X		ЗX	x	×	0		ΔX=0.03 ΔY=0.02	ΔY=-0.02 R=0.01	ΔX=0.02		0		ΔX=0.03 ΔY=0.2 R=0.02	ΔY=-0.01 R=0.02	ΔX=0.07 ΔY=-0.03 R=0.05	
24	27								4X			зх	2X	4X	x	×	0	0	ΔX=0.15 ΔY=-0.22 ΔZ=-0.06	ΔX=0.01 ΔZ=-0.02	ΔX=-0.09 ΔY=0.07		0	0	ΔX=0.15 ΔY=-0.16 ΔZ=0.08	ΔX=0.26 ΔY=0.03 ΔZ=-0.02	ΔX=-0.07 ΔY=-0.04	
25	28	2X									2X	зх	2X	4X	x	x	0	0	ΔX=0.15 ΔY=-0.22 ΔZ=-0.06	ΔX=0.01 ΔZ=-0.02	ΔX=-0.09 ΔY=0.07		0	0	ΔX=0.15 ΔY=-0.16 ΔZ=0.08	ΔX=0.26 ΔY=0.03 ΔZ=-0.02	ΔX=-0.07 ΔY=-0.04	
26	29		x						2Х			x	2X	зх	x	x	0	0	ΔX=0.01 ΔY=-0.03 ΔZ=0.01 Δ _V =0.0002	ΔY=-0.01 ΔZ=0.01	ΔX=-0.01 ΔY=0.01 ΔZ=0.01		0	0	ΔX=0.01 ΔY=-0.03 ΔZ=0.01 Δ _V =0.0002	ΔY=0.01 ΔZ=0.03	ΔX=0.01 ΔY=0.03 ΔZ=-0.01	
27	30		x						2X			8X	7X	8X	x	x	0	0	ΔX=0.03 ΔY=-0.03 ΔZ=-0.02 Δ _V =0.0003	ΔY=-0.03 ΔZ=0.03	ΔY=0.01 ΔZ=0.04		0	0	ΔX=0.03 ΔY=-0.03 ΔZ=0.03 Δ _V =0.0003	ΔY=0.03 ΔZ=-0.03 R=0.01	ΔX=0.01 ΔY=-0.03 ΔZ=0.02 R=0.01	

					G	ieome	tric Prin	mitives					Tra	nsacti	ons			CATI	A vs GeoN	lodel (VI	P1)			(CATIA vs (Geant4		
							GeoN	/lodel																				
	Ex. Nº	Cube	Tube	Pyr	Trap.	Cone	PolyC.	PolyG.	Arbitr.	Sym.	Dsym	М	R	Subt.	Μ	R	м	R	Subtr.	М	R	Conf	м	R	Subt	Μ	R	Conf
28	31		x							x	x	8X	8X	8X	x	x	0	0	ΔX=0.03 ΔY=-0.03 ΔZ=-0.03 Δ _V =0.00031	ΔY=-0.03 ΔZ=0.03	ΔY=0.01 ΔZ=0.04		0	0	ΔX=0.03 ΔY=-0.03 ΔZ=-0.03 Δ _V =0.00031	ΔX=0.02 ΔY=0.03 R=0.01	ΔX=-0.02 ΔY=-0.03 ΔZ=0.03 R=0.01	
29	32					x			3Х			7X	5X	7X	x	x	0	0	ΔX=0.03 ΔY=0.03 ΔZ=0.03 Δ _V =0.0016	ΔX=-0.03 ΔZ=-0.02 Δ _V =0.003 3	ΔX=0.01 ΔZ=0.02		0	0	$\Delta X = -0.05$ $\Delta Y = 0.03$ $\Delta Z = -0.03$ $\Delta_v = 0.0016$ R = 0.01	ΔX=0.04 ΔY=0.06 ΔZ=-0.05 Δ _V =0.0033 R=0.02	ΔX=0.05 ΔY=-0.08 ΔZ=-0.02 R=0.04	
30	33					x			2X	x		7X	5X	7X	x	x	0	0	ΔX=0.03 ΔY=0.03 ΔZ=0.03 Δ _V =0.0016	ΔX=-0.03 ΔZ=-0.02 Δ _V =0.003 3	ΔX=0.01 ΔZ=0.02		0	0	ΔX=-0.05 ΔY=0.03 ΔZ=-0.03 Δ _V =0.0016 R=0.01	ΔX=0.04 ΔY=0.06 ΔZ=-0.05 Δ _V =0.0033 R=0.02	ΔX=0.05 ΔY=-0.08 ΔZ=-0.02 R=0.04	
31	34		x						x			2X	2X	2X	x	x	0	0	Δ _v =0.0001	0	0		0	0	ΔY=0.01 Δ _V =0.0001	0	0	
32	35		x							x		2X	2X	2X	x	x	0	0	Δ _v =0.0001	0	0		0	0	ΔY=0.01 Δ _V =0.0001	0	0	
33	36		x						x			2X		2X	x	×	0		ΔX=0.02 Δ _v =0.00001	0	ΔX=-0.01 ΔZ=-0.01		0		ΔX=0.02 ΔZ=0.01 Δ _ν =0.00007	ΔX=0.02 ΔZ=-0.02 R=0.03	ΔX=-0.17 ΔZ=0.17 R=0.25	
34	37	2X	2X									3X		ЗX	x	×	0		ΔX=0.01 ΔZ=0.01 Δ _V =0.00007	0	∆Z=0.02		0		ΔX=0.02 ΔZ=0.01	ΔX=-0.03 ΔZ=0.05 R=0.05	ΔX=-0.16 ΔZ=-0.21 R=0.19	
35	38		2X						x			x		2X	x		0		ΔX=-0.03 ΔY=-0.03 ΔV=0.0009	0			0		ΔX=-0.03 ΔY=-0.03 ΔV=0.0009	0		
36	39	x	2X						x	x		2X		4X	x		0		ΔX=-0.24 ΔY=-0.18 ΔV=0.0009	0			0		ΔX=-0.24 ΔY=-0.18 ΔV=0.0009	0		
37	40								5X				2X	4X	x	x		0	ΔX=0.11 ΔY=0.09 ΔZ=-0.12 Δ _V =0.0004	ΔX=0.01 ΔY=-0.01 ΔZ=0.01	ΔX=0.09 ΔY=0.1			0	ΔX=0.11 ΔY=0.09 ΔZ=-0.12 Δ _V =0.0004	ΔX=0.01 ΔY=0.01 ΔZ=0.01	ΔX=0.09 ΔY=0.1	
38	41	x							4X				3X	4X	x	x		0	ΔX=0.11 ΔY=0.09 ΔZ=-0.12 Δ _V =0.0004	ΔY=0.01	ΔX=0.09 ΔY=0.1			0	ΔX=0.11 ΔY=0.09 ΔZ=-0.12 Δ _V =0.0004	ΔY=0.01	ΔX=0.09 ΔY=0.1	

					G	ieome	etric Pri	mitives					Tra	insacti	ons			CATI	A vs GeoN	1odel (V	P1)			(CATIA vs (Geant4		
							GeoN	/lodel																				
	Ex. Nº	Cube	Tube	Pyr	Trap.	Cone	PolyC.	PolyG.	Arbitr.	Sym.	Dsym	Μ	R	Subt.	м	R	м	R	Subtr.	м	R	Conf	м	R	Subt	М	R	Conf
39	55	x			x							2X	2X	2X	x	×	0	0	ΔX=0.08 ΔY=0.01	ΔY=0.02	ΔX=-0.01 ΔY=0.02	-	0	0	ΔX=0.08 ΔY=0.01	∆Y=0.02	ΔX=-0.01 ΔY=0.01	-
40	56	2X										зх		ЗX	x	x	0		ΔX=0.03 ΔY=0.02	0	ΔX=0.01	-	0		ΔX=0.03 ΔY=0.02	0	0	-
41	57		2X									2X	2X	x	x	×	0	0	ΔX=0.04 ΔY=0.02 ΔV=0.002	∆X=0.01	ΔX=0.02 ΔY=0.03 R=0.01		0	0	ΔX=0.04 R=0.02 ΔV=0.002	ΔX=0.01 ΔY=0.01 ΔZ=0.01	ΔX=0.02 ΔY=0.03 R=0.05	-
42	58	2X	x									x		2X	2X	×	0		ΔX=0.03 ΔY=0.02	ΔY=-0.02 R=0.01	ΔX=0.02		0		ΔX=0.03 ΔY=0.2 R=0.02	ΔY=-0.01 R=0.02	ΔX=0.07 ΔY=-0.03 R=0.05	-
43	59	2X	x									x		2X	2X	x	0		ΔX=0.03 ΔY=0.02 Δ _V =0.0005 R=0.01	0	ΔY=-0.02		0		ΔX=0.03 ΔY=0.21 Δ _V =0.0001 R=0.17	0	∆Y=0.23 R=0.05	-
44	60	x									2X	x	x	2X	2X	2X	0	0	ΔX=0.15 ΔY=-0.22 ΔZ=-0.06	ΔX=0.01 ΔZ=-0.02	ΔX=-0.09 ΔY=0.07		0	0	ΔX=0.15 ΔY=-0.16 ΔZ=0.08	ΔX=0.26 ΔY=0.03 ΔZ=-0.02	ΔX=-0.07 ΔY=-0.04	-
45	61								зх			x	x	2X	2X	2X	0	0	ΔX=0.15 ΔY=-0.22 ΔZ=-0.06	ΔX=0.01 ΔZ=-0.02	ΔX=-0.09 ΔY=0.07		0	0	ΔX=0.15 ΔY=-0.16 ΔZ=0.08	ΔX=0.26 ΔY=0.03 ΔZ=-0.02	ΔX=-0.07 ΔY=-0.04	-
46	63	2X												x	x	x	0		ΔY=-0.09 ΔZ=0.06	ΔZ=0.01	ΔX=0.03 ΔY=0.01	-	0		ΔY=-0.09 ΔZ=0.06	ΔY=-0.01 ΔZ=0.01	ΔX=0.03 ΔY=0.02	-
47	69	x	x									x		x	x		0		ΔX=-0.06 ΔY=-0.05	0		-	0		ΔX=-0.06 ΔY=-0.05	0		-
48	72	×			x							зх	ЗХ	2X	х	x	0	0	ΔX=0.08 ΔY=0.01	ΔY=0.02	ΔX=-0.01 ΔY=0.02	0	0	0	ΔX=0.08 ΔY=0.01	ΔY=0.02	ΔX=-0.01 ΔY=0.01	0
49	74	4X			2X							6X	6X	5X	2X	2X	0	0	ΔX=0.08 ΔY=0.01	ΔY=0.02	ΔX=-0.01 ΔY=0.02	-	0	0	ΔX=0.08 ΔY=0.01	ΔY=0.02	ΔX=-0.01 ΔY=0.01	-
50	75	2X	x									2X		x		×	0		ΔX=-1.34 ΔZ=0.94 Δ _V =0.175		ΔX=-0.47 ΔZ=0.33	Clash= 1.28	0		ΔX=-1.44 ΔZ=-0.9 Δ _V =0.044		∆Z=-0.09	Clash= 0.91
51	77	x	2X									x	x	x	x	x	0		ΔX=-1.71 ΔZ=-1.25 Δ _V =34.45	0	0	-	0	0	ΔX=-1.75 ΔZ=-1.25 R=0.05 ΔV=34.45	0		-

Postulate #01

 For all type of detector geometries dimensional, form and positioning faults are caused by *Boolean* operations

Postulate #02

- All internal surfaces received by *Boolean* subtraction of parametrical primitives from Box brings 0 faults
- Test Example #09

Test Example #15

Postulate #03

 Boolean operations are correlate with Move and Rotate transactions executing after the Boolean. All Move/Rotate transactions before Boolean are fine

					G	eome	tric Pri	mitives	S				Tra	nsacti	ons			CATI	A vs GeoN	lodel (V	P1)			(CATIA vs (Geant4		
							GeoN	Nodel																				
	Ex. Nº	Cube	Tube	Pyr	Trap.	Cone	PolyC.	PolyG.	Arbitr.	Sym.	Dsym	М	R	Subt.	М	R	м	R	Subtr.	М	R	Conf	м	R	Subt	М	R	Conf
_																												
1	1			зх								5X	4X	5X	x	x	0	0	ΔX=0.25 ΔY=-0.15 Δ _V =0.0014	ΔX=-0.02 ΔY=0.01	ΔX=0.07 ΔY=-0.18		0	0	ΔX=0.25 ΔY=-0.15 Δ _V =0.0014	ΔX=-0.02 ΔY=0.01	ΔX=0.06 ΔY=-0.17	
2	2	2X										2X	x	2X	x	x	0	o	ΔY=0.01 ΔZ=-0.02	o	ΔX=0.01		0	0	ΔY=0.01 ΔZ=-0.02	ΔZ=0.03	ΔX=-0.01 ΔY=-0.02	
3	4	x							x					x	x	x			ΔX=-0.03 ΔY=-0.02	o	ΔX=0.02 ΔY=-0.02 ΔZ=-0.02				ΔX=-0.03 ΔY=-0.02	o	ΔX=0.02 ΔY=-0.02	
4	6	2X										x		x	x	x	0		ΔX=-0.23 ΔZ=-0.13 ΔV=0.0002	0	ΔX=0.03 ΔY=0.1 ΔZ=0.01		0		ΔX=-0.23 ΔZ=-0.13 ΔV=0.0002	∆Z=0.03	ΔX=0.03 ΔY=0.1 ΔZ=0.01	
5	7	x							x					2X	x	x			ΔX=-0.07 ΔY=-0.05	ΔX=0.01 ΔY=0.05	ΔX=-0.02 ΔY=0.09				ΔX=-0.07 ΔY=-0.05	ΔX=0.01 ΔY=0.05	ΔX=0.04 ΔY=0.09	
6	8	2X										x	х	x	x	x	0	0	ΔZ=-0.01	0	0		0	0	∆Z=-0.01	o	0	
7	9								2X			2X		2X	x	x	o		o	0	ΔX=-0.01		ο		o	o	o	
8	10	зх										4X		4X	x	x	o		ΔX=0.03 ΔY=0.03	ΔX=0.03 ΔY=0.03	ΔX=-0.04 ΔY=-0.02		ο		ΔX=0.03 ΔY=0.03	ΔX=0.03 ΔY=0.03	ΔX=-0.04 ΔY=-0.02	
9	11	2X												x	x	x			ΔY=-0.09 ΔZ=-0.06	0	ΔX=0.03 ΔY=0.01				ΔY=-0.09 ΔZ=-0.06	ΔY=-0.01 ΔZ=-0.01	ΔX=0.03 ΔY=0.02	
10	12								2X					x	x	x			ΔX=-0.09 ΔY=-0.06	ΔY=-0.02	ΔX=0.03 ΔY=0.01				ΔX=-0.09 ΔY=-0.06	ΔY=-0.03	ΔX=0.03 ΔY=0.02	
11	13	х	x							x		x		2X	x	x	0		ΔX=0.01 Δ _V =0.0002	ΔX=-0.03 ΔY=-0.02	ΔX=-0.01 ΔY=0.02		0		ΔX=0.01 Δ _V =0.0002	ΔX=0.03 ΔY=-0.03	ΔX=-0.01 ΔY=0.03	
12	14	x	x						x			2X		2X	x	x	0		ΔX=-0.03 ΔY=-0.02 Δ _V =0.0002	0	ΔX=-0.01 ΔY=0.02		0		ΔX=-0.03 ΔY=-0.02 Δ _V =0.0002	o	ΔX=-0.01 ΔY=0.03	

Postulate #04

 For all external surfaces created by subtraction of parametrical primitives from Box, *Boolean* operation don't correlated with *Move/Rotation* transactions

Postulate #05

 For some internal surfaces created by subtraction of parametrical primitives from Polygon methods, *Boolean* operation don't correlated with *Move* transactions

Test Example #19, #20

• Test Example #22

<u>Test Example #38, #39</u>

Checking Hypothesis 02:

Investigation of as-built geometry descriptions with geometry descriptions of simulation

 ATLAS End-CAP toroid Magnet Assembly is the heaviest component of Detector. Weight is 280t

Source geometry has been taken from SmarTeam Engineering Database:

<u>Path</u> : ATLAS CURRENT/Detector System/Magnets ATLAS/Toroid Magnets ATLAS/Barrel Toroid Magnet ATLAS/End-cap Toroid Magnet Model: **ST0268528 ECT assembly side C (id: CAD000628534**)

Missing parts have been created from CDD Drawings (902 drawings):

1 90 Cover 219 2 Shield 3 **Tie Rods** 64 Vacuum vessel **Bore Tube** 4 4 5 **Turret** 268 Coil 6 4 **Cold Mass Keystone box** 27 7 135 **Services** 8 9 **Supports** 13 10 Joke 12 11 Tower 30

Tools and Methods of Competitive Engineering, 11 May 2016

Drawings Added

		CATIA		XML		Difference	%
1	Cold Mass	116740	kgs	123012	kgs	+6'272 kgs	5.4 %
2	Thermal Shielding	15988	kgs	15957	kgs	- 31 kgs	0.2 %
3	Cover	57966	kgs	57185	kgs	-781 kgs	1.3 %
4	Bore Tube	13433	kgs	10208	kgs	-3'225 kgs	24.0 %
5	Yoke	1820	kgs	1338	kgs	-483 kgs	26.5 %
6	Stay Tube	2028	kgs	2214	kgs	+186 kgs	9.2 %
7	JTV Shielding	4161	kgs	4510	kgs	+349 kgs	8.4 %
8	Turret	2476	kgs	1512	kgs	-964 kgs	38.9 %
9	Tie Rod	3077	kgs	1268	kgs	-1'809 kgs	58.8 %
10	Bolts/	2965	kgs			-2'965 kgs	100.0 %
11	Services	869	kgs			-869 kgs	100.0 %

Simplification/Thermal Shielding Assembly

	Detailed	Simplified		Detailed	Simplified		Material	
	Volume/ m ³	Volume/ m ³	Difference/ m ³	Mass/ kgs	Mass/ kgs	Difference/ kgs		Density
Thermal Silding	6,057	6,056	0,001	16`353,9	16`351,2	2,7	Aluminum	2700

Detailed model

Simplifield model

ATLAS End-CAP Toroid Study / Simplification

Results of Simplification of End-CAT Toroid Assemblies

	Detailed	Simplified		Detailed	Simplified		Material	
	Volume/ m ³	Volume/ m ³	Difference/ m ³	Mass/ kgs	Mass/ kgs	Difference/ kgs		Density
Cold Mass	43,24	43,23	0,01	116`748	116`721	27	Aluminum	2700
Thermal Silding	6,057	6,056	0,001	16`353	16`351	2	Aluminum	2700
Cover	20,8	20,804	-0,004	56`160	56`170,8	-10,8	Aluminum	2700
Brackets	0,22	0,2201	-0,0001	1760	1760,8	-0,8	Steel	8000
BoreTube	1,679	1,678	0,001	13`432	13`424	8	Steel	8000
Yoke	0,231	0,231	0	1848	1848	0	Steel	8000
Stay Tube	0,751	0,751	0	2027,7	2027,7	0	Aluminum	2700
JTV Shilding	1,65	1,649	0,001	4158	4155,48	2,52	Polyboron	2520
Tie Rod	0,393	0,393	0	3144	3144	0	Steel	8000
Bolts/	0,371	0,371	0	2968	2968	0	Steel	8000
Services	0,06	0,06	0	480	480	0	Steel	8000

ECT Cover as-built model

Internal Conflicts of ECT

ECT After Modification

There Was Internal Conflicts

Nun	nber of inte	enterence	s: 390 (Clas	h:94, Co	ontact:29	io, Clearan	ce:0)		đ
Filter list	: Clash	¥.	No filter o	n value		✓ All stat	uses	~	2
List by	Conflict	List by	Product	Matri	<				
No.	Product 1		Product 2		Туре	Value	Status	Comment	e. /
1	BoreTube	(Cen	youk (yok)		Clash	-3,88	Relevant		
2	BoreTube	(Cen	youk (yok)		Clash	-5,83	Relevant		
3	BoreTube	(Cen	plate2 (plat	e2.2)	Clash	-24,56	Relevant		
4	BoreTube	(Cen	plate2 (plat	e2.3)	Clash	-24,56	Relevant		
5	BoreTube	(Cen	plate2 (plat	e2.4)	Clash	-24,56	Relevant		
6	BoreTube	(Cen	plate2 (plat	e2.5)	Clash	-24,56	Relevant		
7	BoreTube	(Cen	plate2 (plat	e2.6)	Clash	-24,56	Relevant		
8	BoreTube	(Cen	plate2 (plat	e2.7)	Clash	-24,56	Relevant		
9	BoreTube	(Cen	fexebtan pl	a2 (Clash	-24,56	Relevant		
10	BoreTube	(Cen	plate1 (plat	e1.2)	Clash	-24,56	Relevant		
11	BoreTube	(Cen	plate1 (plat	e1.3)	Clash	-24,56	Relevant		
12	BoreTube	(Cen	plate1 (plat	e1.4)	Clash	-24,56	Relevant		
13	BoreTube	(Cen	plate1 (plat	e1.5)	Clash	-24,56	Relevant		
14	BoreTube	(Cen	plate1 (plat	e1.6)	Clash	-24,56	Relevant		
15	BoreTube	(Cen	plate1 (plat	e1.7)	Clash	-24,56	Relevant		
16	BoreTube	(Cen	fexebtan pl	a1 (Clash	-24,56	Relevant		
17	BoreTube	(Cen	JTV IP (JTV	IP.1)	Clash	-77,65	Relevant		
18	BoreTube	(Cen	3 (3)		Clash	-4,65	Relevant		
19	BoreTube	(Cen	4 (4)		Clash	-21,6	Relevant		
22	youk (yok)	shua cilind	ri (s	Clash	-18,32	Relevant		
25	support (t	ie ro	Symmetry	of S	Clash	-38,27	Relevant		
26	support (t	ie ro	shua cilind	ri (s	Clash	-100,7	Relevant		
27	cilindri (su	ppo	Symmetry	of S	Clash	-104,8	Relevant		
28	cilindri (su	ppo	coil box (c	oil	Clash	-79,6	Relevant		

Internal Conflicts of ECT

External Conflicts of ECT

There Are No Integration Conflicts

External Conflicts of ECT

External Conflicts of ECT

Conclusions of End-CAP Toroid Study

- Compare analyse of CATIA vs XML shows >20% difference in volume and weight for majority of components
- 2. The grouping of volumes in the two geometry systems may differ somewhat, but the distribution of mass in the detector still shows significant differences
- Most big discrepancies were detected for BoreTube assembly – 3 tonnes; TieRod assembly – 2 tonnes and Turret assembly – 960 kg
- 4. Conflicts analyses discover substantial integration conflicts for internal assembly of ECT as well external conflicts with surrounded components of detector

ATLAS Coil Study

ATLAS detector have 8 identical Coils

Source geometry has been taken from SmarTeam Engineering Database:

 <u>Path</u>: ATLAS2009/Detector System/Magnets ATLAS/Toroid Magnets ATLAS/Barrel Toroid Magnet ATLAS/TB coils
 <u>Model</u>: ST0301587 TB COIL SEC2 (id: CAD000323373)
 <u>Date</u>: 01/11/2011

225 manufacturing drawings have been founded on CDD and missing parts was added to primary Smarteam geometry
Compare Analyses

Simplification of Assembly

Integration Conflicts Analyses

 $\begin{array}{l} \Delta_{_{RI}} = R1 \big|_{CATIA} \ - \ R1 \big|_{XML} \ = 9515 \ mm - 9480 \ mm = 35 \ mm \\ \Delta_{_{RI}} = R2 \big|_{CATIA} \ - \ R2 \big|_{XML} \ = 5295 \ mm - 5270 \ mm = 25 \ mm \end{array}$

• Warm Structure Clashes

Warm Structure Clashes

Conclusions of Coil Study

- 1. Compare analyse shows big differences in volume and weight between CATIA and XML descriptions
- 2. 11.6 tonnes missed materials were discovered for GEANT-4 geometry descriptions
- 3. 219 tonnes added materials were discovered for FLUGG geometry descriptions
- 4. Conflicts analyses discover substantial integration conflicts for internal assembly of Coil as well external conflicts with feet's of detector.
- 5. 35mm dispositioning of Coil has been discovered

Calculation of Total Volume and Weight

Big Sector \	Wheel		
5'822 kg _{Total Weight}	= 1419kgs _{Vol.1} +773.5kgs _{Vol.4.1,4.2} +448kgs _{Bolts&Nuts}	+ 918kgs _{Vol.2} + 708.5kgs _{Vol.5}	+ 339kgs _{Vol.3} + + 1216kgs _{Vol.6.1-6.8}
2.0464 m ³ _{Total Volun}	me = 0.0657 m ³ _{Vol.1} +0.0358 m ³ _{Vol.4.1,4.2} + 0.056 m ³ _{Bolts&Nuts}	+ 0.0425 m ³ _{Vol.2} + 0.0328 m ³ _{Vol.5}	+ 0.0157 m ³ _{Vol.3} + 0.0563 m ³ _{Vol.6.1-6.8}

Small Sector Wheel + 1051.92 kgs | Vol.2 + 397.44 kgs | Vol.3 4'710 kg |_{Total Weight} = 1438.56 kgs |_{Vol.1} + 306.72 kgs |_{Vol.4} + 248.4 kgs | Vol.5 + 216 kgs | Vol.6 + 239.76 kgs | Vol.7 + 162 kgs | Vol.8 + 125.28 kgs | Vol.9 + 524 kgs I Bolts&Nuts 1.6159 m³ |_{Total Volume} = 0.5328 m³ |_{Vol.1} + 0.3896 m³ |_{Vol.2} + 0.1472 m³ |_{Vol.3} + 0.092 m³ + 0.08 m³ + 0.1136 m³ |_{Vol 4} + 0.0888 m³ |_{Vol.7} + 0.06 m³ |_{Vol.8} + 0.0464 m³ |_{Vol.9} + 0.0655 m³ | Bolts&Nuts

BWMDTAllSectorTotal 3.6723 Volume (m³) 10'532 Weight (kgs)

Simplification of Large and Small Sectors

Integration Conflicts Analyses

Model	Material	Density (kg/m3)	Volume (m ³)	Weight (kgs)	Missing (kgs)
CATIA	Aluminum/Stainl ess Steel	2700 / 8000	3.6723	10'532	
PERSINT/XML	Aluminum	2700	2.3184	6'260	-4'272

CATIA Model

GEANT-4 Model

Integration Conflicts Analyses

No Integration Conflicts

Conclusions of MDT Support Study

- 1. Compare analyse shows big differences in volume and weight between CATIA and XML descriptions
- 2. 4.2 tonnes missed materials were discovered for GEANT-4 geometry descriptions
- 3. There are no Integration Conflicts

Final Conclusions

- <u>Hypothesis #01</u> has been approved: Simulation software infrastructure added geometry inaccuracies
 - 1. For all type of detector geometries dimensional, form and positioning faults are caused by *Boolean* operations
 - 2. All internal surfaces received by *Boolean* subtraction of parametrical primitives from *Box* brings 0 faults
 - 3. Boolean operation correlated with Move/Rotation transactions in GEANT. Once Boolean operation is implemented transactions generating geometry displacements of support points of geometry created by Boolean procedures
 - 4. For all external surfaces created by subtraction of parametrical primitives from *Box*, *Boolean* operation don't correlated with *Move/Rotation* transactions

- 5. For some internal surfaces created by subtraction of parametrical primitives from *Polygon* methods, *Boolean* operation don't correlated with *Move* transactions
- 6. Arbitrary Polygon method is most reliable way to simulate detector geometry in simulation software infrastructure
- 7. Boolean operation cause clashes (~1.28mm) inside geometry which is "visible" for large size volumes and not visible for smaller because of limitations of CATIA tool using for analyses
- 8. Increasing of dimensional values of geometry are exponentially increase values of inaccuracies added by *Boolean* operations

- <u>Hypothesis #02</u> has been approved: Geometry descriptions in simulation are not consistent with as-built geometry descriptions. As a result it may cause discrepancies between real and simulated data.
- 1. Compare analyses of ECT, Coils and MDT Supports show inconsistence with as-built geometry in terms of volumes, weight, positioning and existence of integration conflicts
- Compare analyse of ECT shows >20% difference in volume and weight for majority of components
- 3. ECT Conflicts analyses discover substantial integration conflicts for internal assembly and external conflicts with surrounded components of detector as well
- 4. For Coil Assembly 11.6 tonnes missed materials were discovered for GEANT-4 and 219 tonnes added materials were discovered for FLUGG geometry descriptions

- Coil's Conflicts analyses discover substantial integration conflicts for internal assembly and external conflicts with feet's of detector as well
- 6. Coil's dispositioning on 35mm has been discovered
- 7. For MDT Supports 4.2 tonnes missed materials were discovered for GEANT-4 geometry descriptions

Comments are welcome

Lasha.Sharmazanashvili@cern.ch

Thanks for your attention!