CUTTING PROCCESS OPTIMIZATION ON THE BASE OF CNC ADAPTIVE PROGRAMMING

Alexander SHARMAZANASHVILI Dr Professor

Georgian CAD/CAM Engineering Center Tbilisi, Georgia Lasha.Sharmazanashvili@cern.ch www.cadcam.ge

TMCE 2008 April 21 – 25 Izmir, Turkey

Total production cost

 $Q_{\Sigma} = Q_W + Q_M$

 Q_W - cost of workpiece Q_M - cost of machining

Dispersion of Workpiece Hardness:

Deviation from average is for:Iron alloys – 46%Aluminum alloys – 48%

Dispersion of Workpiece Dimensions:

Engineering hand books

Types	$(R_z)_1(mm)$	h ₁ (mm)	$(\Delta_{\Sigma})_1(mm)$			$(Td)_1 (mm) = \epsilon_1 (mm)$	
CASTING	0.2	0.1	0.28			4	2.6
PUNCHING	0.2	0.25	0.084	1 Q	1.1	5	4
ROLLING	0.32	0.4		2.1		3	4.32
WELDING	1.5	-	0.06 *	о Ч	1.06	5.5	5.3

Manufacturing experience

Types	$(R_{z})_{1}(mm)$	h ₁ (mm)	$(\Delta_{\Sigma})_1(mm)$	(Td) ₁ (mm)	ε ₁ (mm)
CASTING	$(\mathbf{R}_{z})_{1}$	h ₁	$(\Delta_{\Sigma})_1$	4	2.6
PUNCHING	(R ₂)1	h ₁	(^Δ _Σ) ₁	4.2	3.7
ROLLING				5	-
WELDING	(R _z) ₁	h ₁	(^Δ _Σ) ₁	11	8.1

• Literature sources

Types	$(R_z)_1 (mm)$	h1 (mm)	$(\Delta \Sigma)_1 (\text{mm})$	$(Td)_1 (mm)$	$\epsilon_1 (mm)$
CASTING	(Rz)1	hı	0.21	2.6	1.8
PUNCHING	0.2	1	$(\Delta \Sigma)_{l}$	2.4	3.5
ROLLING	(Rz)1	0.75	$(\Delta \Sigma)_1$	(Td)1	4.7
WELDING	-	3.5	5.6	15.3	16.8

	Hand-Books ɛ ₁ (mm)	Experience ^ε 2 (mm)	Sources 5 ₃ (mm)
CASTING	2.6	2.6	1.8
PUNCHING	4	3.7	3.5
ROLLING	4.32	-	4.7
WELDING	5.3	8.1	16.8

Disturbance is the difference between the designed and existing values of workpiece parameters

Methods of Parametrical Optimization

Without considering of expences of tools

With considering of wear of tools

 $T = \frac{C_T}{V^{\mu} \cdot S^{\nu} \cdot t^{\rho}}$

V - Cutting speed

S - Feedrate

t - Depth of cut

Adaptive Real Time Control

Adaptive Part Programming (APP)

 $T = \frac{C_T}{V^{\mu} \cdot S^{\nu} \cdot t^{\rho}}$

Optimization Criteria $Q = \left(\tau_M + \frac{\tau_I}{N}\right) \cdot Q_T + \frac{Q_I}{N} \qquad \qquad Q = \ell \cdot Z \cdot Q_T \cdot \left(\frac{1}{V \cdot S \cdot t} + \frac{\tau_I + \frac{Q_I}{Q_T}}{V \cdot S \cdot t \cdot T}\right)$ $q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_{\tau}} \cdot V^{\mu - 1} \cdot S^{\nu - 1} \cdot t^{\rho - 1}$ $\gamma = \tau_I + \frac{Q_I}{Q_T}$ $\frac{\partial q}{\partial V} = 0 \qquad \frac{\partial q}{\partial S} = 0 \qquad \frac{\partial q}{\partial t} = 0$ Ts $\frac{\partial q}{\partial V} = 0$ V_3 T_{v} V, $V^* = \left(\frac{C_T}{\gamma \cdot (\mu - 1) \cdot S^{\nu} \cdot t^{\rho}}\right)^{\overline{\mu}}$ $\frac{\partial q}{\partial S} = 0$ V. $S^* = \left(\frac{C_T}{\gamma \cdot (\gamma - 1) \cdot V^{\mu} \cdot t^{\rho}}\right)^{\overline{\nu}}$ S1 S, S,

$$T = \frac{C_T}{V^{\mu} \cdot S^{\nu} \cdot t^{\rho}} \qquad q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_T} \cdot V^{\mu-1} \cdot S^{\nu-1} \cdot t^{\rho-1}$$

Optimization Criteria $Q = \left(\tau_M + \frac{\tau_I}{N}\right) \cdot Q_T + \frac{Q_I}{N} \qquad \qquad Q = \ell \cdot Z \cdot Q_T \cdot \left[\frac{1}{V \cdot S \cdot t} + \frac{\tau_I + \frac{Q_I}{Q_T}}{V \cdot S \cdot t \cdot T}\right]$ $q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_{\tau}} \cdot V^{\mu - 1} \cdot S^{\nu - 1} \cdot t^{\rho - 1}$ $\gamma = \tau_I + \frac{Q_I}{Q_T}$ $\frac{\partial q}{\partial V} = 0 \qquad \frac{\partial q}{\partial S} = 0 \qquad \frac{\partial q}{\partial t} = 0$ $\frac{\partial q}{\partial V} = 0$ Ts V_3 T_{v} V2 $V^* = \left(\frac{C_T}{\gamma \cdot (\mu - 1) \cdot S^{\nu} \cdot t^{\rho}}\right)^{\mu}$ $\frac{\partial q}{\partial S} = 0$ V, $S^* = \left(\frac{C_T}{\gamma \cdot (\nu - 1) \cdot V^{\mu} \cdot t^{\rho}}\right)^{\overline{\nu}}$ S1 S, S,

$$T = \frac{C_T}{V^{\mu} \cdot S^{\nu} \cdot t^{\rho}} \qquad q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_T} \cdot V^{\mu-1} \cdot S^{\nu-1} \cdot t^{\rho-1}$$

Optimization Criteria

$$C_{m_{i}} \cdot V^{\alpha} \cdot S^{\beta} \cdot t^{\gamma} = M_{i} \leq [\Pi_{i}] \quad \text{-Boundary conditions}$$

$$\downarrow$$

$$\begin{bmatrix} H = C_{H} \cdot V^{\alpha_{H}} \cdot S^{\beta_{H}} \cdot t^{\gamma_{H}} \\ \Phi = C_{\Phi} \cdot V^{\alpha_{\Phi}} \cdot S^{\beta_{\Phi}} \cdot t^{\gamma_{\Phi}} \end{bmatrix} \quad \longrightarrow \quad q = a \cdot t^{\eta} + \frac{\gamma}{C_{T}} \cdot b \cdot t^{\lambda}$$

$$a = \frac{\left\{ \begin{bmatrix} H \end{bmatrix} \cdot C_{H}^{-1} \right\}^{\left(\frac{\gamma}{\beta_{H}}\right) \cdot \left(\frac{\beta_{\Phi}}{\alpha_{\Phi}}^{-1}\right)}}{\left\{ \begin{bmatrix} \Phi \end{bmatrix} \cdot C_{\Phi}^{-1} \right\}^{\left(\frac{\gamma}{\alpha_{\Phi}}^{-1}\right)}} \qquad b = \frac{\left\{ \begin{bmatrix} \Phi \end{bmatrix} \cdot C_{\Phi}^{-1} \right\}^{\left(\frac{\gamma}{\alpha_{\Phi}}^{-1}\right)}}{\left\{ \begin{bmatrix} H \end{bmatrix} \cdot C_{H}^{-1} \right\}^{\left(\frac{\gamma}{\beta_{H}}\right) \cdot \left(\frac{\beta_{\Phi} \cdot \mu}{\alpha_{\Phi}}^{-\beta_{\Phi}} - \frac{\beta_{\Phi}}{\alpha_{\Phi}^{-\nu-1}}\right)}} \\ \eta = \frac{\gamma_{\Phi}}{\alpha_{\Phi}} + \frac{\gamma_{H}}{\beta_{H}} - 1 - \frac{\gamma_{H}}{\gamma_{\Phi}} \cdot \beta_{H}} \qquad \lambda = \left(\frac{\gamma_{H} \cdot \beta_{\Phi}}{\alpha_{\Phi}} - \frac{\gamma_{\Phi}}{\alpha_{\Phi}} \right) \cdot \left(\mu - 1\right) - \frac{\gamma_{H}}{\beta_{H}} \cdot \left(\nu - 1\right)} \right)$$

 $)+\rho -1$

$$T = \frac{C_T}{V^{\mu} \cdot S^{\nu} \cdot t^{\rho}} \qquad q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_T} \cdot V^{\mu-1} \cdot S^{\nu-1} \cdot t^{\rho-1}$$

Optimization Rules $N = \frac{1}{6120} \cdot V \cdot C_{P_Z} \cdot S^{\beta_Z} \cdot t^{\gamma_Z} \cdot HB^{n_Z}$ $M = 0.5 \cdot 10^{-3} \cdot D \cdot C_{P_{\tau}} \cdot S^{\beta_{Z}} \cdot t^{\gamma_{Z}} \cdot HB^{n_{Z}}$ $V_M \leq V_{\max}$ $S_M \leq S_{\max}$ $R_{z} = \left| \frac{S_{o} \cdot t^{\gamma_{z}} \cdot (\varphi \cdot \varphi_{1})^{z_{c}}}{C \cdot r^{u}} \right|^{\gamma_{s}}$ $T_0 = \gamma \cdot \left(\frac{\alpha \cdot \nu - \beta \cdot \mu}{\alpha - \beta} - 1 \right)$

 $P_{x} = C_{P_{x}} \cdot S^{\beta_{x}} \cdot t^{\gamma_{x}} \cdot HB^{n_{x}}$ $P_{z} = C_{P_{z}} \cdot S^{\beta_{z}} \cdot t^{\gamma_{z}} \cdot HB^{n_{z}}$ $P_{y} = C_{P_{y}} \cdot S^{\beta_{y}} \cdot t^{\gamma_{y}} \cdot HB^{n_{y}}$

[P]

[S]

S

[N]

В

[N]

V

$$T = \frac{C_T}{V^{\mu} \cdot S^{\nu} \cdot t^{\rho}} \qquad q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_T} \cdot V^{\mu-1} \cdot S^{\nu-1} \cdot t^{\rho-1}$$

Optimization Rules

$$T = \frac{C_T}{V^{\mu} \cdot S^{\nu} \cdot t^{\rho}} \qquad q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_T} \cdot V^{\mu-1} \cdot S^{\nu-1} \cdot t^{\rho-1} \quad [PV][SV][PT][ST][SN][PN][MV][MN][MT]$$

Optimization Rules

[PV][SV] [PT] [ST] [SN] [PN] [MV] [MN] [MT]

$$T = \frac{C_T}{V^{\mu} \cdot S^{\nu} \cdot t^{\rho}} \qquad q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_T} \cdot V^{\mu-1} \cdot S^{\nu-1} \cdot t^{\rho-1} \quad [PV][SV][PT][ST][SN][PN][MV][MN][MT]$$

5 Typical cases of machining:

Workpiece - P20HB180; Cutting tool – GC415; $\tau_I = 2$ min; $Q_I = 6.7$ cent; $[P_z] = 30$ n; $[P_y] = 4$ n; $[R_z] = 0.002$ mm Workpiece - K20HB260; Cutting tool - GC43 $\tau_I = 2$ min; $Q_I = 6.7$ cent; $[P_z] = 30$ n; $[P_y] = 7$ $[R_z] = 0.002$ mm

Workpiece – P30HB200; Cutting tool – GC415; $\tau_I = 2$ min; $Q_I = 6.7$ cent; $[P_z] = 30$ n; $[P_y] = 7$ n; $[R_z] = 0.002$ mm

> Workpiece – P01HB100; Cutting tool – GC415; $\tau_I = 2$ min; $Q_I = 6.7$ cent; $[P_z] = 30$ n; $[P_y] = 7$ n; $[R_z] = 0.002$ mm

> > Workpiece - M20HB170; Cutting tool – GC435; $\tau_I = 2$ min; $Q_I = 6.7$ cent; $[P_z] = 25$ n; $[P_y] = 7$ n; $[R_z] = 0.002$ mm

$$T = \frac{C_T}{V^{\mu} \cdot S^{\nu} \cdot t^{\rho}} \qquad q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_T} \cdot V^{\mu-1} \cdot S^{\nu-1} \cdot t^{\rho-1} \quad [PV][SV][PT][ST][SN][PN][MV][MN][MT]$$

Analysis of Adaptive Control

$$T = \frac{C_T}{V^{\mu} \cdot S^{\nu} \cdot t^{\rho}} \qquad q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_T} \cdot V^{\mu-1} \cdot S^{\nu-1} \cdot t^{\rho-1} \quad [PV][SV][PT][ST][SN][PN][MV][MN][MT]$$

Analysis of Adaptive Control

 $q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_T} \cdot V^{\mu - 1} \cdot S^{\nu - 1} \cdot t^{\rho - 1}$

$$T = \frac{C_T}{V^{\mu} \cdot S^{\nu} \cdot t^{\rho}} \qquad q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_T} \cdot V^{\mu-1} \cdot S^{\nu-1} \cdot t^{\rho-1} \quad [PV][SV][PT][ST][SN][PN][MV][MN][MT]$$

Analysis of Adaptive Control

$$T = \frac{C_T}{V^{\mu} \cdot S^{\nu} \cdot t^{\rho}} \qquad q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_T} \cdot V^{\mu-1} \cdot S^{\nu-1} \cdot t^{\rho-1} \quad [PV][SV][PT][ST][SN][PN][MV][MN][MT]$$

Analysis of Adaptive Part Programming

$$T = \frac{C_T}{V^{\mu} \cdot S^{\nu} \cdot t^{\rho}} \qquad q = \frac{1}{V \cdot S \cdot t} + \frac{\gamma}{C_T} \cdot V^{\mu-1} \cdot S^{\nu-1} \cdot t^{\rho-1} \quad [PV][SV][PT][ST][SN][PN][MV][MN][MT]$$

Analysis of Adaptive Part Programming

$$\psi = \left(\frac{Q_0}{Q_a} - 1\right) \cdot 100\%$$

STHO Structure

STCL Structure

Model Formalizm for STHO

M₁₋₁ - "Fast->Feedrate->Fast->Fast" M₁₋₂ - "Fast->Feedrate->Feedrate->Fast"

$$Z_{HO}^{E} \to T_{1HO}^{E} \to M_{1-1}^{L}$$

$$Z_{HO}^{E} \to T_{1HO}^{E} \to M_{1-1}^{D}$$

$$Z_{HO}^{E} \to T_{1HO}^{E} \to M_{1-2}^{L}$$

$$Z_{HO}^{E} \to T_{1HO}^{E} \to M_{1-2}^{D}$$

Model Formalizm for STCL

$$Z_{CL}^{E} \rightarrow T_{1CL}^{E} \rightarrow M_{3}$$

$$Z_{CL}^{E} \rightarrow T_{2HO}^{E} \rightarrow M_{1-1}$$

$$T_{1CL}^{E} \rightarrow M_{3}$$

$$Z_{CL}^{E} \rightarrow T_{1CL}^{E} \rightarrow M_{3}$$

$$T_{1HO}^{E} \rightarrow M_{1-1}$$

$$Z_{CL}^{E} \rightarrow T_{2HO}^{E} \rightarrow M_{1-1}$$

$$T_{2CL}^{E} \rightarrow M_{1-1}$$

CNC Custom Software Development

Sinumerik MS2-300 Heidenhain Co.

Contact Probe Marpos

Adaptive Control Unit Promess – [M] [V]

 $N...\{A_i\}\{X_j\}\{H_k\}\{Y_m\}$

 A_i - is array of subroutine names - 5 names L71÷L75 were reserved for this array

 X_j - array of geometrical parameters of STHO/STCL; 19 parameters R11÷R30 were reserved

 H_k - array of machining parameters, optimization rules and constants - 9 parameters R31÷R40 were reserved

 Y_m - array of entry control parameters - 9 parameters R41÷R50 were reserved.

CNC Custom Software Development

Correction Algorithms

Conclusions

1. For rough cutting conditions it is identified that correction of tool path geometry according to actual value of workpiece dimensions brings enhancement of fixed rule adaptive control for [PV], [SN], [PN], [MV], [MN] control.

2. For limitations concerning with cutting tool life period (rules [PT], [MT]), correction of tool path geometry is not necessary.

3. Adaptive Part Programming approach can be realized through the customization of the standard cycle's library of CNC.

Thanks a lot !

1