Modification of XML geometry baseline according to comparison with CATIA reference

Niko TSUTSKIRIDZE GEORGIAN TECHNICAL UNIVERSITY 23.10.2012

Reconstruction and Simulation

Detector Structure in XML

ECT_ToroidN ECT_ToroidsP

XML Models Preparation

New Method Force:

- Extraction of Models from
 Smarteam Engineering Database
- Import of XML models in CATIA
- Compare Analysis
- Modification of Component Geometry
- XML conflicts checking

Research Map of Coil Project

- 1. Reproduction of Coils Engineering Model in CATIA
- 2. Segmentation and Definition of Mass Properties
- 3. Compare Analysis of Engineering and XML Models
- 4. Simplification of Geometry
- 5. Generation of XML Codes

Model Reproduction in CATIA

Segmentation and Definition of Mass

Vol.1. Cryostat Top

e 1	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m³)	Total (Volume (m³)	Total Mass (kgs)
Jun	1	Cryostat Top	Assembly	Stainless Steel 304L	8000	1.26	1	L.26	10 088
ž							Total Mass (kg		088
	6 8								
		10					me 6,8	Number of iter	ns Part N
5							Volu 2,4,	4	Cryostat

Vol.2, 4, 6, 8. Cryostat Corner

olume ,4,6,8	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m³)	Total Volume (m ³)	Total Mass (kgs)
	4	Cryostat Corner	Assembly	Stainless Steel 304L	8000	0.04	0.16	1 344
							Total Mass (kg)	1 344
					-			
					1			
		•		-	-6			
			~					
	~							
								7
	- Change and Change an							and the second

Compare Analysis

 $\Delta_{v} = \Delta_{v1} + \Delta_{v2} + \Delta_{v3} + \Delta_{v4} + \Delta_{v5} + \Delta_{v6} + \Delta_{v7} + \Delta_{v8} = 0.124 \text{ m}^{3} - 0.001 \text{ m}^{3} + 0.176 \text{ m}^{3} + 0.198 \text{ m}^{3} - 0.157 \text{ m}^{3} + 0.088 \text{ m}^{3} + 0.149 \text{ m}^{3} + 2.327 \text{ m}^{3} = 2.9 \text{ m}^{3}$

 $\Delta_{\rm v} = \Delta_{\rm m1} + \Delta_{\rm m2} + \Delta_{\rm m3} + \Delta_{\rm m4} + \Delta_{\rm m5} + \Delta_{\rm m6} + \Delta_{\rm m7} + \Delta_{\rm m8} = 1138 \text{ kg} + 14 \text{ kg} + 158 \text{ kg} + 1738 \text{ kg} - 911 \text{ kg} + 778 \text{ kg} + 1248 \text{ kg} + 7517.9 \text{ kg} = 11680.9 \text{ kg}$

Simplification of Geometry

2 Standard Phases of Synthesis:

- Grouping of components with same materials and density
- Unify groups with kindred materials and density

Simplification of Voussoirs

	Name	Material	Density	Volume	Weight	
	Vossuoir	Aluminium	2650	0.537	1423	Volume 9.1
Volume 9	Vossuoir	SSTEEL	8000	0.015	120	Volume 9.3
	Tie rod	TA5 E-ELI	4480	0.016	72	
	Lug	Z3 CN18-10	8000	0.028	224	Volume 13
	Shouldered axis	TA5 E-ELI	4480	0.005	22	
	Small bar support	Z3 CN18-10	8000	0.0003	2	
/olume 13	Piston	Z3 CN18-10	8000	0.0001	1	
	Convex bar	Z3 CND 17-12 Az	8000	0.0001	1	Volume13
	Concave bar	Z3 CND 17-12 Az	8000	0.0002	1	
	Tie-Rod Therm. Plate	Al 1050 H22	2705	0.015	41	

1st Phase

2nd Phase

Simplified Geometry in CATIA

Discrepancies in Volume = 0.05 m³ in Mass = 15Kg

XML causes:

- Necessity for additional detailzation of Geometry
- Programming in Z0 position
- Necessity in additional geometrical transactions for final positioning
- Creation of Overlaps and Gaps

• Method for XML conflicts detection and evaluation in CATIA

20	<tubs <="" name="CryoLong_Tube" th=""><th>material="Ir</th><th>on" Rio_Z="529.4814; 550</th><th>.; 23648.36"</th><th>nbPhi="32" /></th></tubs>	material="Ir	on" Rio_Z="529.4814; 550	.; 23648.36"	nbPhi="32" />
88	<tubs <="" name="CryoShort_Tube" td=""><td>material="Ir</td><td>on" Rio_Z="529.4814; 550</td><td>.; 3708.36"</td><td>nbPhi="32" /></td></tubs>	material="Ir	on" Rio_Z="529.4814; 550	.; 3708.36"	nbPhi="32" />
	<tubs <="" material="Ir</td><td>on" name="CryoCorner_Tube</td><td>" rio_z="529.4814; 550</td><td>.; 1470.436" td=""><td>nbPhi="32" /></td></tubs>	nbPhi="32" />			
L	<box <="" name="CryoCutBox" td=""><td>material="Ir</td><td>on" X_Y_Z="1600.; 1600.;</td><td>600. " /></td><td></td></box>	material="Ir	on" X_Y_Z="1600.; 1600.;	600. " />	
Г	<pre><subtraction name="CryoLon</pre></td><td>g_Tube_Up"></subtraction></pre>				
88	<posxyz volume="CryoLong</td><td>Tube"></posxyz>				
ii i	<posxyz td="" volume="CryoCutB</td><td>ox" x_y_z<=""><td>=" 0. ; 0. ; -11824.18 "</td><td>rot=" -22.5 ;</td><td>: 0 ; 0. "/></td></posxyz>	=" 0. ; 0. ; -11824.18 "	rot=" -22.5 ;	: 0 ; 0. "/>	
X X	<posxyz td="" volume="CryoCutB</td><td>ox" x_y_z<=""><td>=" 0. ; 0. ; 11824.18 "</td><td>rot=" 22.5 ;</td><td>0 ; 0. "/></td></posxyz>	=" 0. ; 0. ; 11824.18 "	rot=" 22.5 ;	0 ; 0. "/>	
88					
X X	<subtraction <="" name="CryoSho</td><td>rt_Tube_Side" td=""><td>></td><td></td><td></td></subtraction>	>			
8	<posxyz volume="CryoShor</td><td>t_Tube"></posxyz>				
4	<pre><posxyz td="" volume="CryoCutB</pre></td><td>ox" x_y_<=""><td>Z=" 0. ; 0. ; 1854.18"</td><td>rot=" 22.5 ; 0</td><td>); 0. "/></td></posxyz></pre>	Z=" 0. ; 0. ; 1854.18"	rot=" 22.5 ; 0); 0. "/>	
X X	<posxyz td="" volume="CryoCutB</td><td>ox" x_y_<=""><td>Z=" 0. ; 0. ; -1854.18 "</td><td>rot=" -22.5 ;</td><td>0 ; 0. "/></td></posxyz>	Z=" 0. ; 0. ; -1854.18 "	rot=" -22.5 ;	0 ; 0. "/>	
8					
88	<subtraction name="CryoCor</td><td>ner_Tube_4"></subtraction>				
X X	<posxyz volume="CryoCorn</td><td>er_Tube"></posxyz>				
8	<posxyz td="" volume="CryoCutB</td><td>ox" x_y_z<=""><td>=" 0. ; 0. ; 735.218"</td><td>rot=" 22.5 ; 0</td><td>); 0. "/></td></posxyz>	=" 0. ; 0. ; 735.218"	rot=" 22.5 ; 0); 0. "/>	
88	<posxyz td="" volume="CryoCutB</td><td>ox" x_y_z<=""><td>=" 0. ; 0. ; -735.218"</td><td>rot=" -22.5 ;</td><td>0 ; 0. "/></td></posxyz>	=" 0. ; 0. ; -735.218"	rot=" -22.5 ;	0 ; 0. "/>	
L					
Γ	<pre><composition name="CryoTub</pre></td><td>Sector"></composition></pre>				
88	<posxyz <="" td="" volume="CryoLong</td><td>Tube_Up"><td>X_Y_Z="0. ; 2110. ; 0</td><td>. " 2</td><td>cot=" 0. ; 0. ; 0. " /></td></posxyz>	X_Y_Z="0. ; 2110. ; 0	. " 2	cot=" 0. ; 0. ; 0. " />	
X X	<posxyz <="" td="" volume="CryoLong</td><td>Tube_Up"><td>X_Y_Z="0. ; -2110. ; 0</td><td>. " 2</td><td>cot=" 0. ; 0. ; 180. " /:</td></posxyz>	X_Y_Z="0. ; -2110. ; 0	. " 2	cot=" 0. ; 0. ; 180. " /:	
22	<posxyz <="" td="" volume="CryoShor</td><td>t_Tube_Side"><td>X_Y_Z=" 0.; 0.; 12080.</td><td>" 2</td><td>cot=" 90. ; 0 ; 0 " /></td></posxyz>	X_Y_Z=" 0.; 0.; 12080.	" 2	cot=" 90. ; 0 ; 0 " />	
	<posxyz <="" td="" volume="CryoShor</td><td>t_Tube_Side"><td>X_Y_Z=" 0.; 0.; -12080</td><td>. ⁿ 1</td><td>cot=" -90 ; 0 ; 0 " /></td></posxyz>	X_Y_Z=" 0.; 0.; -12080	. ⁿ 1	cot=" -90 ; 0 ; 0 " />	
	<posxyz <="" td="" volume="CryoCorn</td><td>er_Tube_4"><td>X_Y_Z=" 0; 1819.732; 1</td><td>1789.731" 1</td><td>cot=" 45. ; 0. ; 0 " /></td></posxyz>	X_Y_Z=" 0; 1819.732; 1	1789.731" 1	cot=" 45. ; 0. ; 0 " />	
22	<posxyz <="" td="" volume="CryoCorn</td><td>er_Tube_4"><td>X_Y_Z=" 0; 1819.732; -</td><td>11789.731" 1</td><td>cot=" -45. ; 0. ; 0 " /></td></posxyz>	X_Y_Z=" 0; 1819.732; -	11789.731" 1	cot=" -45. ; 0. ; 0 " />	
88	<pre><posxyz <="" td="" volume="CryoCorn</pre></td><td>er_Tube_4"><td>X_Y_Z=" 0; -1819.732;</td><td>-11789.731" 1</td><td>cot=" -135. ; 0. ; 0 " /:</td></posxyz></pre>	X_Y_Z=" 0; -1819.732;	-11789.731" 1	cot=" -135. ; 0. ; 0 " /:	
88	<pre><posxyz <="" td="" volume="CryoCorn</pre></td><td>er_Tube_4"><td>X_Y_Z=" 0; -1819.732;</td><td>11789.731" 1</td><td>cot=" 135. ; 0. ; 0 " /></td></posxyz></pre>	X_Y_Z=" 0; -1819.732;	11789.731" 1	cot=" 135. ; 0. ; 0 " />	
3 L					

- According to Given Structure it was generated XML code for the full Coil
- Code consists of 200 programming strings

Conclusions

- 1. Creation of precise descriptions of ATLAS detector components on the base of engineering data is actual task for the Reconstruction and Simulation
- 2. Implementation of CATIA provides efficient way for the comparison of XML descriptions with Engineering models
- 3. Compare analysis should be done by CATIA DMU algorithms
- 4. Geometry export from XML to CATIA should be done on the base of facet representation of geometry (*.wrl* file)
- 5. New method of visualisation and calculation of XML overlaps and Gaps on the base of CATIA, was developed
- 6. For the ATLAS detector Coils New models reproduction, Compare analysis, Simplification and XML code generation have been done

Thank you for Attention