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Abstract. Virtual Reality (VR) applications play an important role in HEP Outreach & Education. They 

enable the organization of virtual tours of the experimental infrastructure by allowing users to interact 

virtually with detector facilities and describe their purpose and functionalities. However, nowadays, VR 
applications require expensive hardware, like the Oculus headset or the MS HoloLens, and powerful 

computers. As a result, this reduces the reach of VR application implementation and makes their benefits 

questionable. An important improvement to VR development is thus to facilitate the usage of inexpensive 

hardware, like Google cardboard and phones with average computational power. 

Requirements to use inexpensive hardware and achieve quality and performance close to the advanced 

hardware bring challenges to VR application developers. One of these challenges concerns the geometry of 

the 3D VR scenes. Geometry defines the quality of the 3D scenes and at the same time, causes big loads on 

the GPU. Therefore, development methods of the geometry make it possible to find a good balance between 

the quality and performance of the VR applications. 

This paper describes methods for simplifying the "as-built" geometry of the ATLAS detector, ways to reduce 

the number of facets to meet GPU performance limitations, and ensure smooth movement in VR scenes. 

1 Overview 

 Visualization is one of the key factors for the 

Outreach & Education activity of the High Energy 

Physics (HEP) experiments. 3D visualization with 

advanced VR (Virtual Reality), AR (Augmented 

Reality), and MXR (MiXed Reality) extensions make it 

possible to visualize detectors' facilities, explaining their 

purpose, functionalities, development histories and 

collaboration. 

 The HEP visualization applications for Outreach & 

Education serve a large audience. Therefore, they 

should be extensive, easily accessible, compatible with 

most hardware and operating systems, simple to use, and 

with a well-developed user framework and open source. 

The browser-based software applications built on the 

gaming engines, bring a best fit to these requirements. 

As a result, there are no binary codes for the application. 

They will be downloaded from the server and run inside 

the browsers without any installations. Because 

browsers are compatible with the majority of hardware 

and software platforms, the applications will derive the 

same benefit. Applications will also be easily reachable. 

Typing the URL address in the browser will be enough 

to run the application. 
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 Almost all browsers use the WebGL API [1] for the 

rendering of interactive 2D and 3D graphic scenes [2]. 

WebGL is a JavaScript API, based on OpenGL. There 

are several WebGL JavaScript libraries for 3D 

visualization in browsers - Babylon, three.js, Phaser.js, 

etc. They bring huge benefits because they are open-

source and fast-growing platforms. They deliver 

powerful features of WebGL-based and physical-based 

3D rendering, directional point-spot lighting, static and 

skinned meshes, texturing, importing of geometries, etc. 

 Gaming engines also bring the possibility to build a 

VR experience on cheap cardboard headsets by splitting 

the mobile device screen into two symmetrical parts and 

synchronizing screen updates according to the 

movement of the cardboard. The cardboard orientation 

in the space ensures the scenes' control through the 

portable devices' gyroscope. 

 At the same time, browser-based applications cause 

limitations in performance compared to binary 

applications, while the text code is interpreted during the 

execution by the browsers. Also, gaming engines cannot 

render the complex geometries of the HEP facilities or 

slow down the process so that the browser kills it. 

 Thus, important assets for browser-based 

visualization applications are geometries. They play a 

key role in the definition of the quality of the 3D scenes 
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and the performance of the applications. Quality and 

performance are two antagonistic measurements of the 

application. The high quality of the 3D scenes causes 

low performance, and vice versa. Geometry is a factor 

ensuring a good balance between quality and 

performance. 

 The best immersive VR experience brings so-called 

as-built geometries, which express the existing real-life 

hardware of the detector and, therefore, have the highest 

level of detail. However, as-built geometries are 

extremely complex, which makes it impossible for 

gaming engines to visualize them. For instance, the as-

built geometry of the ATLAS detector consists of about 

45 million solid geometry primitives [3], which 

translates into tens of billions of triangles for the mesh 

geometries. Therefore, it brings the necessity for 

geometry simplification, ensuring a balance between the 

quality of the 3D scenes and the performance of the 

application. 

 The development of effective methods and tools for 

geometry simplification is especially important for VR 

applications. VR screen foresees the existence of the 

two frames with the two symmetrical 3D contents. It 

doubles the overall scene weight and issues more strict 

requirements for geometry simplification to find the 

quality-vs-performance balance. 

 

2 Geometry Development Life Cycle 

 As-built geometries of HEP facilities are 

represented by Computer-Aided Design (CAD) 3D 

models in the engineering databases. They are solids 

geometry with the highest level of details, are editable, 

and are placed in widely used repositories and formats. 

However, CAD geometries can not be implemented by 

the engines directly, and therefore, geometry 

transformations are required. Gaming engines have 

internal methods for the description of the solid-based 

geometries. However, the way to transform CAD solid-

based geometry into engine solid is unlikely to be 

possible because of: 

1. Solid-to-solid transformations concerned with 

geometry structural tree translation from CAD to 

the engines, which always cause geometry faults. 

2. Engines have limited possibilities to represent the 

solid geometries and are not suitable for the 

complex geometries of the HEP facilities. 

3. Engines have very poor Boolean processors making 

it impossible to do cuts on complex geometries. 

 Thus, the only way to bring the as-built CAD 

geometries into the visualisation engines is to use the 

mesh-based geometries representing just the surfaces of 

the objects. 

  CAD platforms have internal methods for the 

export of the meshes from the solids. In the majority of 

cases, it is possible through the WRL or CGR files. 

However, CAD meshes can not be implemented by the 

engines because they don't contain information about 

the texture and lighting necessary for rendering. 

Therefore, an additional transient graphical modelling 

platform is needed to deliver CAD meshes to 

visualization engines.  Good results can be delivered by 

the Blender software application. However, it raises 

another problem of importing the CAD meshes in 

Blender. As mentioned earlier, HEP facilities have 

complex geometries, and meshes can contain tens of 

millions of triangles and hundreds of thousands of 

objects. Blender fails to read such kinds of meshes - in 

most cases, crashing or spending tens of hours reading 

the geometries. 

 Below is the case study of the Scene-2 geometry of 

the VR application, which represents the Muon Barrel 

region of the ATLAS detector in the Cavern  (Fig.1).   

 

Fig. 1. Scene-2 of the Muon Barrel region in VR 

It consists of the objects of BIO Outer Chambers, BIM 

Middle Chamber, BIS Small Chambers, Feet, and 

Cavern [6]. The overall characteristics of the CAD mesh 

are given in Table 1. 

Table 1. Overall parameters of Scene-2  

 
Triangles Objects 

BIS Small Chambers 149'600 6'544 

BIM Middle Chambers 825'344 17'400 

BIO Outer Chambers 45'962'224 163'155 

Feet 9'760'647 6'175 

Cavern 140'000 529 

Total: 56'837'815 193'803 

 For this amount of triangles and objects, Blender 

crashes when reading the mesh. Just for one component 

- BIO Chambers with the amount of triangles 45'962'224 

and 163'155 objects Blender successfully read the mesh 

geometry.  This task took 14 hours of the  Intel core I7 

4770/RAM 8Gb/Win11 machine and used 50% CPU 

load with 8Gb RAM. 

 Thus, an additional graphical platform is needed 

between the CAD and Blender. Good results are 

delivered by Keyshot application[7]. 

 The final life cycle of geometry development used 

for the browser-based VR application is presented in 

Fig. 2. CATIA, as a CAD platform, is responsible for 

meshing - the creation of the vertex matrix with xyz  



 

Fig. 2. Geometry development life cycle  

meshing coordinates from the solids and all necessary 

geometry transactions, and generation of the output in 

WRL. 

▪ Keyshot is responsible for triangulation, 

normals generation, and tesselation. Output 

generated in GLB. 

▪ Blender is responsible for UV mapping, 

texturing, and lighting. Output generated in 

FBX. 

▪ WebGL/three.js is responsible for rendering 

and representation of geometry in 3D scenes. 

 However, geometry transformations in the chain 

bring additional problems related not to geometry faults 

but to mesh structure. It causes an increasing number of 

triangles in the mesh and as a result, makes geometries 

heavier. During the tesselation and handling of the 

imported geometry data, many vertices are duplicated or 

added alongside the edges. Therefore, additional steps 

for instant cleaning should be done on the imported 

meshes. These steps include: 

▪ Removing the duplicated vertexes 

▪ Deleting the unused materials 

▪ Simplifying the mesh geometry 

▪ Fixing the normals 

▪ Removing the loose geometry 

▪ Cleaning up the mesh topology. 

These steps reliably bring CAD meshes into the 

WebGL/three.js graphical engine for visualization. 

However, it is not enough because CAD meshes contain 

as-built geometry with a lot of detail. They are much 

heavier than engine limitations. The above-described 

Scene-2 has about 57 million triangles (Table 1). VR 

application duplicates screens. Thus, the presented 

geometry of Scene-2 exceeds by 30 times the limitations 

of the WebGL/three.js engine. Therefore, after 

successful import in Blender, the geometry should be 

simplified to find a good balance between the quality 

and performance of the VR applications. 

3 Geometry Simplification Methods 

There are several ways to reduce the number of 

triangles in the description. One way is to increase the 

approximation and reduce the quality of visualisation. 

Then, for each screen resolution, the optimal 

approximation value has to be chosen. Also, an essential 

parameter for selecting the approximation is the 

zooming rate, which describes the maximal zooming 

coefficient of the scene. Therefore, the approximation 

should be slightly visible for the maximal zooming rate 

of the scene. The good approximation value should 

express the excellent balance between the number of 

triangles in the scene and the quality of visualization of 

the scene. 

 Another way to reduce the number of triangles 

strongly is to remove the holes and circular parts and 

replace rounded profiles with linear ones. So, most 

surfaces must be described by the quads (2 triangles). 

The optimal approximation value should be found for 

the surfaces where such modification is impossible. 

 The third way of reducing the number of triangles is 

to rate the components of the detector according to their 

visibility in the visualization scene. Dimensions of 

detector components vary from tens of centimetres up to 

the tens of meters. For instance, the Pixel detector in the 

ATLAS detector [4] has dimensions 

(L=1.8m/D=0.245m) in comparison to the Tile 

Calorimeter [5], which is the middle part 

(L=11.4m/D=8.6m) and Muon detectors [6] 

(L=30m/D=24m). The imported geometry of the pixel 

detector contains 356’000 triangles. Thus, there is no 

reason to import detailed geometry descriptions of the 

Pixel detector because it will be almost invisible because 

of its comparatively small size. At the same time, it 

dramatically increases the overall number of triangles in 

the scene. 

 Therefore, for the given maximal zooming rate of 

the scene, some components will stay in the scene less 

visible because of their small dimensions (DI/LI in 

Fig.3). Therefore, there is no need for details, and 

primitive geometries can describe them. Components 

with a medium visibility rate (DII/LII  in Fig.3) will have 

some details, and it is better to describe them by the 

envelope geometry. The last category of components 

with large dimensions (DIII/LIII in Fig.3) will have the 

highest visibility rate; most likely, it is better to 

implement detailed geometry descriptions for their 

import. Finally, all detector components can be grouped 

into three categories according to their visibility rate. 

The recommended type of geometry description for the 

import can be assigned to each detector component 

(Fig.3). 

Fig. 3. Visibility categories of detector components 

 Geometry simplification methods are described in 

the book Ref. [3]. The method should include 

simplification steps, considering all the factors 

mentioned above, playing an essential role in reducing 



the number of triangles. The geometry description 

simplification method with seven consecutive steps is 

described below. 

STEP#01: PARAMETERS DEFINITION 

The first step for simplification is the definition of 

values of general parameters of the visualization scene, 

which will impact the further steps of simplification. 

These parameters are: 

1. Rsc - the screen resolution. Preliminary, should be 

decided on the purpose and domain of the 

application. The browser-based VR applications are 

run on portable devices. Therefore, the Rsc 

parameter will correspond to the screen resolution 

of the mobile phones - 360 x 640 pixels. 

2. Minimal dimensions of the components, that ensure 

their visibility in the scene. Two parameters can be 

considered - the minimal diameter Dmin because 

most of the components of the detector have 

cylindrical shapes and the minimum length of the 

components is Lmin. Dimensions of the detector 

components differ from tens of meters down to 

centimetres. Therefore, the application developers 

and user community decide what components are 

not essential to visualize because of their sizes. As 

a result, all the components with dimensions less 

than Dmin/Lmin will be deleted from the geometry. 

3. Zmax - maximal zooming rate coefficient of the 

scene describes the maximal scale of the 

visualization of the components. The Zmax value 

should be defined according to Rsc and Dmin/Lmin 

values. 

STEP#02: REMOVAL OF THE COMPONENTS 

 Removal of the components with dimensions less 

than Dmin/Lmin. Because Dmin/Lmin sets the minimal 

dimensions of the components to ensure their visibility 

in the scene, all components less than those values 

should be deleted. For this procedure, editable ‘as-built’ 

geometry descriptions are needed. They will be 

modified by erasing the parts with dimensions 

<Dmin/Lmin. 

STEP#03: REMOVAL OF THE PARTS 

Removal of inessential parts from the geometry 

description. ‘As-built’ geometry descriptions of the 

detector contain the whole spectrum of parts and sub-

assemblies of the different purposes - main components 

of facilities; services - cooling pipes, electrical boxes, 

cable trays, pumps; mechanical, support and access 

structures and many others. Depending on the VR 

scenes, some categories must be deleted. For instance, if 

the main purpose of the VR scene is a visualization of 

the main components of the detector, then all other types 

like services, mechanical structures, etc., must be 

deleted. If the purpose is a visualisation of mechanical 

engineering facilities, then components of the detector 

can be presented in a very generic way through the 

primitives. 

STEP#04: REMOVAL OF THE HOLES 

Holes in the geometry descriptions dramatically 

increase the number of triangles. This happens because 

each hole is a set of lines with a number of vertices. In 

facet-based geometry descriptions, all vertices are  

Fig. 4. Facet representation of the surface with the hole 

considered equally. There is no difference between the 

vertices of the hole or edge, etc.  Triangles  are  created  

for all the vertices. As many vertices are on the surface, 

so are many triangles describing the surface. Fig.4 

shows surface representations with and without the hole. 

Surfaces A and C have nine vertices. Eight triangles 

represent each surface. Surface B has eight vertices on 

the edge and 56 vertices belonging to the hole. As a 

result, surface B is described by 64 triangles. So, the 

hole’s presence increases the number of triangles by a 

factor of 8. Because of this, it is necessary to remove 

holes from the geometry description as much as 

possible. Only exceptional purpose holes describing 

essential functionality or facility structure features 

should remain. Usually, detector facilities contain many 

holes, and their removal is a critical step in simplifying 

the geometry. 

STEP#05: TRANSFORMATION OF THE  

                   ROUNDED PROFILES 

Transformation of rounded connections to straight-

line connections. The ‘As-built’ geometry of the 

detector has many construction elements for mechanical 

engineering purposes. The mechanical engineers add 

them for the construction, design, manufacturing, and 

installation. One of the categories of those constructive 

elements is the typical joining of surfaces. The galettes 

and chamfers are usually used as a standard constructive 

joining element. The existence of such features in the 

geometry description is the source of the considerable 

increase in the number of triangles in the scene. Fig.5 

Fig. 5. Triangles on surface with rounded connections 

  



Fig. 6. Galettes on the typical joining 

shows triangles on the surfaces with rounded 

connections of the Feet construction of the ATLAS 

detector.  They  have  to  be  replaced  by  straight-line  

connections. Fig.6 illustrates the number of galettes 

used for joining the straight-line profiles on the joining 

of the surfaces - G1 on the union of the L1-L2; G2 - for 

the L2-L3; G3 - for the L3-L4 and G4 - for the L4-L5. 

Each galette presented in the geometry is not an 

independent solid, but they are part of the profile sketch 

inside the one body (Fig.7). Therefore, their 

modifications are possible through the editing of the 

sketch geometry. It is more complex work than the 

removal of the holes considered above. Sketch 

geometry, as usual, in addition to primitives, also has 

several geometry constraints. Therefore, galette 

modification or removal requires first their isolation and 

then editing. 

Fig. 7. Sketch profile with galettes in CATIA 

 

STEP#06: TRANSFORMATION OF THE  

                  COMPLEX SURFACES 

HEP detector facilities are characterized by the 

massive repetitiveness of the components. There are 

complex components built by identical subcomponents. 

Depending on the visualisation purpose, those 

subcomponents can be replaced by one generic 

description. For instance, the TRT EndCAP disks of the 

ATLAS detector have assemblies with eight disks inside 

of each. Therefore, it is possible to replace eight disks 

with the description of 1 generic disk. As a result, each 

assembly will have one disk instead of 8, and the number 

of triangles for the assembly in the facet-based 

representation will be cut down by a factor of 8. 

STEP#07: SELECTION OF THE APPROXIMATION  

                  VALUE 

The approximation value dramatically impacts the 

number of triangles in the scene and the quality of the 

visualization scene. As significant is the approximation 

value as triangles in the scene and vertices are visible, 

and vice-versa. Fig.9 shows the same solid as in Fig.5 

but with a different approximation value. The 

approximation value in Fig.5 is l1=0.25mm and in Fig.9 

- l2=5mm, 20 times greater than l1. As a result, surface 

B for l1 is described by 64 triangles. The 30 triangles 

represent the same surface for l2 (Fig.8). 

Therefore, increasing the approximation value by a 

factor of 20 cuts twice the number of triangles. At the 

same time, in Fig.5, the whole surface is smooth; in 

Fig.9, the same surface is rough, with visible vertices. 

Thus, the approximation value should express the 

excellent balance between the number of triangles and 

the quality of the visualization. The critical parameter 

for choosing the value of l is the Zmax - maximal zooming 

rate coefficient of the scene, defined in STEP#01 of the 

simplification. There are no typical numerical values for 

the dependency l=f(Zmax). The visualisation application 

developers define them according to the user’s 

requirements. 

Fig. 8. Hole with approximation l2=5mm 

4 Browser-Based VR Application 

 The geometry simplification method was 

implemented for the development of the browser-based 

VR application Tracer/VR (https://tracer-

vr.web.cern.ch ). Four VR scenes were developed from 

the CATIA as-built geometry passing through the chain 

described in section 2. The parameters of scene 2 

considered above in Table 1 were modified and 

presented in Table 2. 

https://tracer-vr.web.cern.ch/
https://tracer-vr.web.cern.ch/


Table 2. Scene-2 before and after simplification  

 
As-built Simplified 

BIS Small Chambers 149'600 22’697 

BIM Middle Chambers 825'344 29’864 

BIO Outer Chambers 45'962'224 23’152 

Feet 9'760'647 9’660 

Cavern 140'000 9’108 

Total: 56'837'815 94’481 

 Tracer/VR uses Google Cardboard virtual reality 

headsets, enabling them to start the application on the 

mobile phone and accommodate it. The application 

causes moderate loads on the 3D scenes and smooth 

movement on the average power phone. The camera in 

the VR scene moves on a fixed path, and users can 

control the scene by head movement using the 

gyroscopic control of the phone. 

 Selection of the VR scene is possible before starting 

the VR experience in the headsets (Fig.9). After that, the 

application divides the mobile device screen into two 

synchronized screens for the headsets. 

Fig. 9. Interface of the Tracer/VR application 

Conclusion 

1. Geometry is an important factor in finding a good 

balance between the quality of the VR scenes and 

the performance of the application. 

2. Geometry simplification implies the transformation 

of the as-built mesh geometries into meshes with 

minimal required, from a scene quality point of 

view, the number of triangles. 

3. The geometry transformation chain from the CAD 

platform includes several graphical platforms and 

steps for mesh corrections. 

4. Geometry simplification methods enable us to 

receive a good VR experience on the average power 

of mobile phones and cardboard headsets. 
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