

Geometry Simplification Methods for Virtual Reality
Applications

Alexander Sharmazanashvili 1*, Roger Jones2, Alexander Alikhanov1, Giorgi Mirziashvili1, Kote Tsutskiridze1,

Ela Abramovi1, Avtandil Khelashvili1

1Georgian Technical University, Nuclear Engineering Center, 0160 Tbilisi Kostava Str. 11, Georgia
2Lancaster University, Department of Physics, LA1 4YB, UK

On behalf of the ATLAS Collaboration

Abstract. Virtual Reality (VR) applications play an important role in HEP Outreach & Education. They

enable the organization of virtual tours of the experimental infrastructure by allowing users to interact

virtually with detector facilities and describe their purpose and functionalities. However, nowadays, VR
applications require expensive hardware, like the Oculus headset or the MS HoloLens, and powerful

computers. As a result, this reduces the reach of VR application implementation and makes their benefits

questionable. An important improvement to VR development is thus to facilitate the usage of inexpensive

hardware, like Google cardboard and phones with average computational power.

Requirements to use inexpensive hardware and achieve quality and performance close to the advanced

hardware bring challenges to VR application developers. One of these challenges concerns the geometry of

the 3D VR scenes. Geometry defines the quality of the 3D scenes and at the same time, causes big loads on

the GPU. Therefore, development methods of the geometry make it possible to find a good balance between

the quality and performance of the VR applications.

This paper describes methods for simplifying the "as-built" geometry of the ATLAS detector, ways to reduce

the number of facets to meet GPU performance limitations, and ensure smooth movement in VR scenes.

1 Overview

 Visualization is one of the key factors for the

Outreach & Education activity of the High Energy

Physics (HEP) experiments. 3D visualization with

advanced VR (Virtual Reality), AR (Augmented

Reality), and MXR (MiXed Reality) extensions make it

possible to visualize detectors' facilities, explaining their

purpose, functionalities, development histories and

collaboration.

 The HEP visualization applications for Outreach &

Education serve a large audience. Therefore, they

should be extensive, easily accessible, compatible with

most hardware and operating systems, simple to use, and

with a well-developed user framework and open source.

The browser-based software applications built on the

gaming engines, bring a best fit to these requirements.

As a result, there are no binary codes for the application.

They will be downloaded from the server and run inside

the browsers without any installations. Because

browsers are compatible with the majority of hardware

and software platforms, the applications will derive the

same benefit. Applications will also be easily reachable.

Typing the URL address in the browser will be enough

to run the application.

* Al. Sharmazanashvili: lasha.sharmazanashvili@cern.ch

 Almost all browsers use the WebGL API [1] for the

rendering of interactive 2D and 3D graphic scenes [2].

WebGL is a JavaScript API, based on OpenGL. There

are several WebGL JavaScript libraries for 3D

visualization in browsers - Babylon, three.js, Phaser.js,

etc. They bring huge benefits because they are open-

source and fast-growing platforms. They deliver

powerful features of WebGL-based and physical-based

3D rendering, directional point-spot lighting, static and

skinned meshes, texturing, importing of geometries, etc.

 Gaming engines also bring the possibility to build a

VR experience on cheap cardboard headsets by splitting

the mobile device screen into two symmetrical parts and

synchronizing screen updates according to the

movement of the cardboard. The cardboard orientation

in the space ensures the scenes' control through the

portable devices' gyroscope.

 At the same time, browser-based applications cause

limitations in performance compared to binary

applications, while the text code is interpreted during the

execution by the browsers. Also, gaming engines cannot

render the complex geometries of the HEP facilities or

slow down the process so that the browser kills it.

 Thus, important assets for browser-based

visualization applications are geometries. They play a

key role in the definition of the quality of the 3D scenes

mailto:lasha.sharmazanashvili@cern.ch

and the performance of the applications. Quality and

performance are two antagonistic measurements of the

application. The high quality of the 3D scenes causes

low performance, and vice versa. Geometry is a factor

ensuring a good balance between quality and

performance.

 The best immersive VR experience brings so-called

as-built geometries, which express the existing real-life

hardware of the detector and, therefore, have the highest

level of detail. However, as-built geometries are

extremely complex, which makes it impossible for

gaming engines to visualize them. For instance, the as-

built geometry of the ATLAS detector consists of about

45 million solid geometry primitives [3], which

translates into tens of billions of triangles for the mesh

geometries. Therefore, it brings the necessity for

geometry simplification, ensuring a balance between the

quality of the 3D scenes and the performance of the

application.

 The development of effective methods and tools for

geometry simplification is especially important for VR

applications. VR screen foresees the existence of the

two frames with the two symmetrical 3D contents. It

doubles the overall scene weight and issues more strict

requirements for geometry simplification to find the

quality-vs-performance balance.

2 Geometry Development Life Cycle

 As-built geometries of HEP facilities are

represented by Computer-Aided Design (CAD) 3D

models in the engineering databases. They are solids

geometry with the highest level of details, are editable,

and are placed in widely used repositories and formats.

However, CAD geometries can not be implemented by

the engines directly, and therefore, geometry

transformations are required. Gaming engines have

internal methods for the description of the solid-based

geometries. However, the way to transform CAD solid-

based geometry into engine solid is unlikely to be

possible because of:

1. Solid-to-solid transformations concerned with

geometry structural tree translation from CAD to

the engines, which always cause geometry faults.

2. Engines have limited possibilities to represent the

solid geometries and are not suitable for the

complex geometries of the HEP facilities.

3. Engines have very poor Boolean processors making

it impossible to do cuts on complex geometries.

 Thus, the only way to bring the as-built CAD

geometries into the visualisation engines is to use the

mesh-based geometries representing just the surfaces of

the objects.

 CAD platforms have internal methods for the

export of the meshes from the solids. In the majority of

cases, it is possible through the WRL or CGR files.

However, CAD meshes can not be implemented by the

engines because they don't contain information about

the texture and lighting necessary for rendering.

Therefore, an additional transient graphical modelling

platform is needed to deliver CAD meshes to

visualization engines. Good results can be delivered by

the Blender software application. However, it raises

another problem of importing the CAD meshes in

Blender. As mentioned earlier, HEP facilities have

complex geometries, and meshes can contain tens of

millions of triangles and hundreds of thousands of

objects. Blender fails to read such kinds of meshes - in

most cases, crashing or spending tens of hours reading

the geometries.

 Below is the case study of the Scene-2 geometry of

the VR application, which represents the Muon Barrel

region of the ATLAS detector in the Cavern (Fig.1).

Fig. 1. Scene-2 of the Muon Barrel region in VR

It consists of the objects of BIO Outer Chambers, BIM

Middle Chamber, BIS Small Chambers, Feet, and

Cavern [6]. The overall characteristics of the CAD mesh

are given in Table 1.

Table 1. Overall parameters of Scene-2

Triangles Objects

BIS Small Chambers 149'600 6'544

BIM Middle Chambers 825'344 17'400

BIO Outer Chambers 45'962'224 163'155

Feet 9'760'647 6'175

Cavern 140'000 529

Total: 56'837'815 193'803

 For this amount of triangles and objects, Blender

crashes when reading the mesh. Just for one component

- BIO Chambers with the amount of triangles 45'962'224

and 163'155 objects Blender successfully read the mesh

geometry. This task took 14 hours of the Intel core I7

4770/RAM 8Gb/Win11 machine and used 50% CPU

load with 8Gb RAM.

 Thus, an additional graphical platform is needed

between the CAD and Blender. Good results are

delivered by Keyshot application[7].

 The final life cycle of geometry development used

for the browser-based VR application is presented in

Fig. 2. CATIA, as a CAD platform, is responsible for

meshing - the creation of the vertex matrix with xyz

Fig. 2. Geometry development life cycle

meshing coordinates from the solids and all necessary

geometry transactions, and generation of the output in

WRL.

▪ Keyshot is responsible for triangulation,

normals generation, and tesselation. Output

generated in GLB.

▪ Blender is responsible for UV mapping,

texturing, and lighting. Output generated in

FBX.

▪ WebGL/three.js is responsible for rendering

and representation of geometry in 3D scenes.

 However, geometry transformations in the chain

bring additional problems related not to geometry faults

but to mesh structure. It causes an increasing number of

triangles in the mesh and as a result, makes geometries

heavier. During the tesselation and handling of the

imported geometry data, many vertices are duplicated or

added alongside the edges. Therefore, additional steps

for instant cleaning should be done on the imported

meshes. These steps include:

▪ Removing the duplicated vertexes

▪ Deleting the unused materials

▪ Simplifying the mesh geometry

▪ Fixing the normals

▪ Removing the loose geometry

▪ Cleaning up the mesh topology.

These steps reliably bring CAD meshes into the

WebGL/three.js graphical engine for visualization.

However, it is not enough because CAD meshes contain

as-built geometry with a lot of detail. They are much

heavier than engine limitations. The above-described

Scene-2 has about 57 million triangles (Table 1). VR

application duplicates screens. Thus, the presented

geometry of Scene-2 exceeds by 30 times the limitations

of the WebGL/three.js engine. Therefore, after

successful import in Blender, the geometry should be

simplified to find a good balance between the quality

and performance of the VR applications.

3 Geometry Simplification Methods

There are several ways to reduce the number of

triangles in the description. One way is to increase the

approximation and reduce the quality of visualisation.

Then, for each screen resolution, the optimal

approximation value has to be chosen. Also, an essential

parameter for selecting the approximation is the

zooming rate, which describes the maximal zooming

coefficient of the scene. Therefore, the approximation

should be slightly visible for the maximal zooming rate

of the scene. The good approximation value should

express the excellent balance between the number of

triangles in the scene and the quality of visualization of

the scene.

 Another way to reduce the number of triangles

strongly is to remove the holes and circular parts and

replace rounded profiles with linear ones. So, most

surfaces must be described by the quads (2 triangles).

The optimal approximation value should be found for

the surfaces where such modification is impossible.

 The third way of reducing the number of triangles is

to rate the components of the detector according to their

visibility in the visualization scene. Dimensions of

detector components vary from tens of centimetres up to

the tens of meters. For instance, the Pixel detector in the

ATLAS detector [4] has dimensions

(L=1.8m/D=0.245m) in comparison to the Tile

Calorimeter [5], which is the middle part

(L=11.4m/D=8.6m) and Muon detectors [6]

(L=30m/D=24m). The imported geometry of the pixel

detector contains 356’000 triangles. Thus, there is no

reason to import detailed geometry descriptions of the

Pixel detector because it will be almost invisible because

of its comparatively small size. At the same time, it

dramatically increases the overall number of triangles in

the scene.

 Therefore, for the given maximal zooming rate of

the scene, some components will stay in the scene less

visible because of their small dimensions (DI/LI in

Fig.3). Therefore, there is no need for details, and

primitive geometries can describe them. Components

with a medium visibility rate (DII/LII in Fig.3) will have

some details, and it is better to describe them by the

envelope geometry. The last category of components

with large dimensions (DIII/LIII in Fig.3) will have the

highest visibility rate; most likely, it is better to

implement detailed geometry descriptions for their

import. Finally, all detector components can be grouped

into three categories according to their visibility rate.

The recommended type of geometry description for the

import can be assigned to each detector component

(Fig.3).

Fig. 3. Visibility categories of detector components

 Geometry simplification methods are described in

the book Ref. [3]. The method should include

simplification steps, considering all the factors

mentioned above, playing an essential role in reducing

the number of triangles. The geometry description

simplification method with seven consecutive steps is

described below.

STEP#01: PARAMETERS DEFINITION

The first step for simplification is the definition of

values of general parameters of the visualization scene,

which will impact the further steps of simplification.

These parameters are:

1. Rsc - the screen resolution. Preliminary, should be

decided on the purpose and domain of the

application. The browser-based VR applications are

run on portable devices. Therefore, the Rsc

parameter will correspond to the screen resolution

of the mobile phones - 360 x 640 pixels.

2. Minimal dimensions of the components, that ensure

their visibility in the scene. Two parameters can be

considered - the minimal diameter Dmin because

most of the components of the detector have

cylindrical shapes and the minimum length of the

components is Lmin. Dimensions of the detector

components differ from tens of meters down to

centimetres. Therefore, the application developers

and user community decide what components are

not essential to visualize because of their sizes. As

a result, all the components with dimensions less

than Dmin/Lmin will be deleted from the geometry.

3. Zmax - maximal zooming rate coefficient of the

scene describes the maximal scale of the

visualization of the components. The Zmax value

should be defined according to Rsc and Dmin/Lmin

values.

STEP#02: REMOVAL OF THE COMPONENTS

 Removal of the components with dimensions less

than Dmin/Lmin. Because Dmin/Lmin sets the minimal

dimensions of the components to ensure their visibility

in the scene, all components less than those values

should be deleted. For this procedure, editable ‘as-built’

geometry descriptions are needed. They will be

modified by erasing the parts with dimensions

<Dmin/Lmin.

STEP#03: REMOVAL OF THE PARTS

Removal of inessential parts from the geometry

description. ‘As-built’ geometry descriptions of the

detector contain the whole spectrum of parts and sub-

assemblies of the different purposes - main components

of facilities; services - cooling pipes, electrical boxes,

cable trays, pumps; mechanical, support and access

structures and many others. Depending on the VR

scenes, some categories must be deleted. For instance, if

the main purpose of the VR scene is a visualization of

the main components of the detector, then all other types

like services, mechanical structures, etc., must be

deleted. If the purpose is a visualisation of mechanical

engineering facilities, then components of the detector

can be presented in a very generic way through the

primitives.

STEP#04: REMOVAL OF THE HOLES

Holes in the geometry descriptions dramatically

increase the number of triangles. This happens because

each hole is a set of lines with a number of vertices. In

facet-based geometry descriptions, all vertices are

Fig. 4. Facet representation of the surface with the hole

considered equally. There is no difference between the

vertices of the hole or edge, etc. Triangles are created

for all the vertices. As many vertices are on the surface,

so are many triangles describing the surface. Fig.4

shows surface representations with and without the hole.

Surfaces A and C have nine vertices. Eight triangles

represent each surface. Surface B has eight vertices on

the edge and 56 vertices belonging to the hole. As a

result, surface B is described by 64 triangles. So, the

hole’s presence increases the number of triangles by a

factor of 8. Because of this, it is necessary to remove

holes from the geometry description as much as

possible. Only exceptional purpose holes describing

essential functionality or facility structure features

should remain. Usually, detector facilities contain many

holes, and their removal is a critical step in simplifying

the geometry.

STEP#05: TRANSFORMATION OF THE

 ROUNDED PROFILES

Transformation of rounded connections to straight-

line connections. The ‘As-built’ geometry of the

detector has many construction elements for mechanical

engineering purposes. The mechanical engineers add

them for the construction, design, manufacturing, and

installation. One of the categories of those constructive

elements is the typical joining of surfaces. The galettes

and chamfers are usually used as a standard constructive

joining element. The existence of such features in the

geometry description is the source of the considerable

increase in the number of triangles in the scene. Fig.5

Fig. 5. Triangles on surface with rounded connections

Fig. 6. Galettes on the typical joining

shows triangles on the surfaces with rounded

connections of the Feet construction of the ATLAS

detector. They have to be replaced by straight-line

connections. Fig.6 illustrates the number of galettes

used for joining the straight-line profiles on the joining

of the surfaces - G1 on the union of the L1-L2; G2 - for

the L2-L3; G3 - for the L3-L4 and G4 - for the L4-L5.

Each galette presented in the geometry is not an

independent solid, but they are part of the profile sketch

inside the one body (Fig.7). Therefore, their

modifications are possible through the editing of the

sketch geometry. It is more complex work than the

removal of the holes considered above. Sketch

geometry, as usual, in addition to primitives, also has

several geometry constraints. Therefore, galette

modification or removal requires first their isolation and

then editing.

Fig. 7. Sketch profile with galettes in CATIA

STEP#06: TRANSFORMATION OF THE

 COMPLEX SURFACES

HEP detector facilities are characterized by the

massive repetitiveness of the components. There are

complex components built by identical subcomponents.

Depending on the visualisation purpose, those

subcomponents can be replaced by one generic

description. For instance, the TRT EndCAP disks of the

ATLAS detector have assemblies with eight disks inside

of each. Therefore, it is possible to replace eight disks

with the description of 1 generic disk. As a result, each

assembly will have one disk instead of 8, and the number

of triangles for the assembly in the facet-based

representation will be cut down by a factor of 8.

STEP#07: SELECTION OF THE APPROXIMATION

 VALUE

The approximation value dramatically impacts the

number of triangles in the scene and the quality of the

visualization scene. As significant is the approximation

value as triangles in the scene and vertices are visible,

and vice-versa. Fig.9 shows the same solid as in Fig.5

but with a different approximation value. The

approximation value in Fig.5 is l1=0.25mm and in Fig.9

- l2=5mm, 20 times greater than l1. As a result, surface

B for l1 is described by 64 triangles. The 30 triangles

represent the same surface for l2 (Fig.8).

Therefore, increasing the approximation value by a

factor of 20 cuts twice the number of triangles. At the

same time, in Fig.5, the whole surface is smooth; in

Fig.9, the same surface is rough, with visible vertices.

Thus, the approximation value should express the

excellent balance between the number of triangles and

the quality of the visualization. The critical parameter

for choosing the value of l is the Zmax - maximal zooming

rate coefficient of the scene, defined in STEP#01 of the

simplification. There are no typical numerical values for

the dependency l=f(Zmax). The visualisation application

developers define them according to the user’s

requirements.

Fig. 8. Hole with approximation l2=5mm

4 Browser-Based VR Application

 The geometry simplification method was

implemented for the development of the browser-based

VR application Tracer/VR (https://tracer-

vr.web.cern.ch). Four VR scenes were developed from

the CATIA as-built geometry passing through the chain

described in section 2. The parameters of scene 2

considered above in Table 1 were modified and

presented in Table 2.

https://tracer-vr.web.cern.ch/
https://tracer-vr.web.cern.ch/

Table 2. Scene-2 before and after simplification

As-built Simplified

BIS Small Chambers 149'600 22’697

BIM Middle Chambers 825'344 29’864

BIO Outer Chambers 45'962'224 23’152

Feet 9'760'647 9’660

Cavern 140'000 9’108

Total: 56'837'815 94’481

 Tracer/VR uses Google Cardboard virtual reality

headsets, enabling them to start the application on the

mobile phone and accommodate it. The application

causes moderate loads on the 3D scenes and smooth

movement on the average power phone. The camera in

the VR scene moves on a fixed path, and users can

control the scene by head movement using the

gyroscopic control of the phone.

 Selection of the VR scene is possible before starting

the VR experience in the headsets (Fig.9). After that, the

application divides the mobile device screen into two

synchronized screens for the headsets.

Fig. 9. Interface of the Tracer/VR application

Conclusion

1. Geometry is an important factor in finding a good

balance between the quality of the VR scenes and

the performance of the application.

2. Geometry simplification implies the transformation

of the as-built mesh geometries into meshes with

minimal required, from a scene quality point of

view, the number of triangles.

3. The geometry transformation chain from the CAD

platform includes several graphical platforms and

steps for mesh corrections.

4. Geometry simplification methods enable us to

receive a good VR experience on the average power

of mobile phones and cardboard headsets.

References

1. Daniel Carson, WebGL: Graphics and Animation.

ResearchGate April 2020

DOI:10.13140/RG.2.2.18538.95683

2. Mert Bal et al., Using WebGL in Developing

Interactive Virtual Laboratories for Distance

Engineering Education. American Society for

Engineering Education (2017)

3. A. Sharmazanashvili, Geometry Modelling in HEP.

Book, CERN library 504, (2022) ISBN 978-9941-

8-5034-9

4. G. Aed et al. (The ATLAS Collaboration),

ATLAS Pixel Detector Electronics and Sensors.

Journal of Instrumentation, vol.3 July (2008)

5. G. Aed et al. (The ATLAS Collaboration),

Operation and Performance of the ATLAS Tile

Calorimeter Run 1. European Physics Journal C78

987 (2018)

6. J. Snuvernink, The ATLAS Muon Spectrometer:

Commissioning and Tracking. University of

Twentem (2009) ISBN 13:978-90-365-2912-9

7. Jei Lee Jo, KeyShot 3D Rendering. Packt

Publishing Ltd, 2012 ISBN: 978-1-84969-483-4

