
A
TL

-S
O

FT
-P

R
O

C
-2

01
3-

02
8

21
O

ct
ob

er
20

13

1

A Tool for Conditions Tag Management in ATLAS

A. Sharmazanashvili1, G. Batiashvili1, G. Gvaberidze1, L. Shekriladze1, A.
Formica2 on behalf of ATLAS collaboration

1 Georgian CADCAM Engineering Center
 52, Rustaveli Ave., 0108 Tbilisi, Georgia

2 CEA-IRFU, Saclay, Gif-sur-Yvette, France

E-mail: Lasha.Sharmazanashvili@cern.ch

Abstract. ATLAS Conditions data include about 2 TB in a relational database and 400 GB of
files referenced from the database. Conditions data is entered and retrieved using COOL, the
API for accessing data in the LCG Conditions Database infrastructure. It is managed using an
ATLAS-customized python based tool set. Conditions data are required for every
reconstruction and simulation job, so access to them is crucial for all aspects of ATLAS data
taking and analysis, as well as by preceding tasks to derive optimal corrections to
reconstruction. Optimized sets of conditions for processing are accomplished using strict
version control on those conditions: a process which assigns COOL Tags to sets of conditions,
and then unifies those conditions over data-taking intervals into a COOL Global Tag. This
Global Tag identifies the set of conditions used to process data so that the underlying
conditions can be uniquely identified with 100% reproducibility should the processing be
executed again. Understanding shifts in the underlying conditions from one tag to another and
ensuring interval completeness for all detectors for a set of runs to be processed is a complex
task, requiring tools beyond the above mentioned python utilities. Therefore, a JavaScript /PHP
based utility called the Conditions Tag Browser (CTB) has been developed. CTB gives
detector and conditions experts the possibility to navigate through the different databases and
COOL folders; explore the content of given tags and the differences between them, as well as
their extent in time; visualize the content of channels associated with leaf tags. This report
describes the structure and PHP/ JavaScript classes of functions of the CTB.

1. The COOL Database
ATLAS conditions database (also known as COOL) is implemented using LCG Condition DB
infrastructure, with Oracle DB as backend and COOL as the API to enter and retrieve data [1].
Conditions data are associated with various ATLAS activities like detector commissioning, Monte-
Carlo simulation, reconstruction and calibration. The condition database consists of several Oracle
database schemas for each subsystem (e.g. online and offline dedicated schemas), and different COOL
instances (sets of tables) within every schema, to separate reconstruction from simulation conditions.
Within a COOL instance, the conditions data are organized in nodes (folders), every node
corresponding to a specific set of data (payload), using a hierarchical tree structure (a parent folder
will have one or many leaf folders). Inside a leaf folder, the data are stored using Intervals Of Validity
(IOVs) to determine a range in time for a set of conditions. The COOL API allows to use as time
interval either a real date-time in nanoseconds (since 1st January 1970), or a number associated to
run/event number (or run/luminosity block) pair. Each folder uses only one of the above definitions.
Several folder types are defined in COOL, allowing different levels of versioning and tagging for a set
of IOVs. For example, in the case of multi version folders, the experts can tag a set of IOVs by using

2

an identification string (tag) that will be associated to every single IOV. Another level of tagging is
called global tagging, where a user can associate a set of tags from different leaf nodes to a parent tag
(called Global Tag or GTag) which will be defined at the root level of all folders for a given schema
and COOL instance. Schema in Fig.1 illustrates the hierarchical structure of COOL nodes.

2. Data methods and sources
Several python/Java/JavaScript-based tools are implemented to explore COOL database content
(Fig.2). The Cool Tag Browser uses various methods and sources in order to gather the relevant data
for visualization of conditions database content. These data sources are either directly connected to
COOL schemas and tables, or to other databases in which we can find part of the COOL DB content,
and which are optimized for accessing a sub set of the COOL information. They can be accessed in
general via web services, or using direct connections to Oracle DB (via SQL queries).

2.1. CherryPyCool
CherryPyCool [2] is a python based web application (developed under CherryPy server); it provides a
RESTful web service [3] accessing COOL data via the COOL API, and making the data available via
standard GET, PUT and POST HTTP methods. The URLs are interpreted to select specific resources
as we can see in the following:

http://voatlas207.cern.ch:8080/ATLAS_COOLPROD/ATLASOFL_CALO/COMP200/tags

 1 2 3 4 5

Fig.2: Database browsing tools

Fig.1: COOL structure

3

1/ hostname and port number of the CherryPyCool application;
2/ the COOL DB server to be accessed;
3/ the COOL Schema to be browsed;
4/ COOL DB instance name;
5/ the keyword delimiter of the method (in this example to retrieve tags).

The server makes available many important functionalities of the COOL API. The XML format is
used for input and output data.

2.2. PL/SQL API
A PL/SQL API [4] has been developed mainly to overcome some limitations in the extraction of meta-
data information from COOL; in particular the API delivers information on nodes, tags, number of
channels, number of IOVs for a given tag etc., from several COOL schemas at the same time. Some
special functions have been created to gather statistics related to the IOV range of a folder tag. The
API is accessible from the database as a package, and it is used in read-only mode.
A Java application deployed in a J2EE server was developed in order to access the PL/SQL functions
via a RESTful web service. A URL example to for this application is the following:

1/ contains server references – address and port
2/ RESTful service references
3/ COOL schema, instance (nodes…) description
4/ special words act as a data delimiter, like: ‘nodes’, ‘tags’, ‘iovs’, ‘list’, ‘data’, etc.

The output formats are XML and JSON.

2.3. COMA Database
In a recent extension of the COMA database [5] a set of tables has been added in order to gather
relevant meta-data from COOL schemas, to provide a fast method to look at folders, global tags and
tags associations over all schemas. A typical SQL query to get COOL folder description from COMA,
looks like:

$query="select NODE_DESCRIPTION, NODE_NAME,NODE_FULLPATH , CBO_NAME, CBS_NAME,CBI_NAME
 from ATLAS_TAGS_METADATA.COMA_CB_NODES inner

join ATLAS_TAGS_METADATA.COMA_CB_OWNER_INSTANCES on
ATLAS_TAGS_METADATA.COMA_CB_OWNER_INSTANCES.CBOI_INDEX
=ATLAS_TAGS_METADATA.COMA_CB_NODES.CBOI_INDEX
where CBO_NAME='".$database."' and CBS_NAME='".$schema."' and CBI_NAME='".$instance."'"." and
NODE_FULLPATH='".$folder."'"

3. Conditions Tag Browser
The Conditions Tag Browser (CTB) is an application developed by a team of researchers from
Georgia. It is a user interface framework providing coherent access to the above sources related to
conditions data storage. CTB is a PHP/JavaScript application based on an Apache web server and
using CherryPyCool, PL/SQL API and COMA DB tables for navigation through the COOL nodes,
data retrieval and visualization. CTB implements also some higher level functions to compare global
tags in order to spot differences in the associations with folder tags and check IOVs statistics on a
given folder and tag by means of the PL/SQL API among others. CTB was developed for experts
coordinating conditions data activities in ATLAS, needing to have an efficient tool to explore tag
content at the level of the whole set of schemas and DB instances. CTB is a read-only service. Initially
it was built on ASP and AJAX platforms. ASP configuration avoids 8080 port security restrictions on
the server and is verified to work on popular browsers (Firefox, Opera, Safari, and IE). However this
system was found to be slow, because JavaScript functions are executing on an intermediate server
that send data to a local PC (Fig.3). The newer AJAX/JavaScript configuration (Fig.4) has faster
performance because JavaScript functions execute inside the client browser.

http://<HostName>:8080/JBRestCool/rest/{schema}/{db}/.../<KeyWord>

 1 2 3 4

4

Fig.3: ASP based Browser Fig.4: AJAX based Browser

As a result CTB architecture was built as a set of 5 PHP modules executing on the server and 3
JavaScript modules executing locally. PHP modules deliver two main categories of functions:
Navigation and Search. JavaScript modules are instead used for data visualization and user interface.
Following the COOL structure (Fig.1) four hierarchical levels of navigation have been identified for
retrieving data from COOL:
1st level: for navigation through the system, instance and folders

2nd level: for navigation through the global Tags

3rd level: for navigation through the Leaf Tags (folder tags)

4th level: for navigation through the Channels

Search functions enable retrieval of all tag related information from COOL matching the users
selection criteria. Depending on the input search functions are divided into two categories.
Selectable input functions include:
1. Trace function: returns list of all leaf tags associated to selected tag. Trace is most useful from the

top-level folder to see the tags defined hierarchically for any leaf folder
2. Back_Trace function: returns a list of all schemas and folders of the selected tag
3. Diff function: enables comparison of two selected tags for the given schema and instance
4. Compare function: does the same but inside of a given folder
5. Channel_Search: retrieves list of channels with IOVs for the selected leaf tag.

Editable input functions include:
1. Global_Search function: enables navigation to start from the schema-DB-Folder set corresponding

to the tag name of the reference string
2. Folder_Search function: retrieves the tag corresponding to the name selected inside the given

schema-DB-Folder selection
3. IOV’s_Search function: retrieves IOVs within a given schema-DB-Folder-tag selection
4. Payload_Search function: retrieves data for the given IOV and channel.

For each exploring method, the CTB chooses the data source which is known to give the best
performance to the users (Fig.5).

5

COMA DB gives the fastest performance when retrieving meta-data information from COOL related
to schemas, folders and tags content. So COMA was chosen for navigation and folder search
functions. Since CherryPyCool access COOL tables directly, it gives more detailed information not
present in COMA, like IOVs related information, and guarantees that the client retrieves the most up-
to-date information (since COMA DB is synchronized daily). The main part of the search functions
are realized on CherryPyCool – Trace, Back Trace, Diff, Compare, Global Search and Payload Search.
The most interesting features of PL/SQL API is related to tag coverage checks, to verify the tag
content by using special queries which are not implemented in COOL API. So PL/SQL was chosen as
a base for the Channel statistic and IOVs search functions.
User interface functions based on JavaScript enable functionalities for:

1. Bookmarking current navigation scenario into a URL
2. Showing navigation path in a status string
3. Displaying job execution time to estimate system performance
4. Filtering of large tag list in a given folder
5. Displaying names of special Global Tags – Current, CurrentES, Next and NextES.

CTB is used for regular Conditions Data coordination tasks in order to prepare the Global Tags for the
official reprocessing of physics data in ATLAS.

References
[1] A. Valassi, R. Basset, M. Clemencic, G. Pucciani, S. A. Schmidt, and M. Wache. Cool, LCG

conditions database for the LHC experiments: Development and deployment status. In
Nuclear Science Symposium Conference Record, 2008. NSS ’08. IEEE, pages 3021–3028,
2008.

[2] S. Roe et al. A restful web service interface to the atlas cool database. In Journal of Physics:
Conference Series, volume 219, page 042021. IOP Publishing, 2010.

[3] Fielding, R.T. Architectural Styles and the Design of Network-based Software Architectures,
PhD dissertation, University of California, Irvine, 2000

[4] Formica A, private communication on PL/SQL API for COOL Metadata
[5] Gallas E, Albrand S, Borodin M and Formica A. “Utility of collecting metadata to manage a

large scale conditions database in ATLAS”, CHEP 2013,
https://indico.cern.ch/contributionDisplay.py?contribId=251&confId=214784

Fig.5 Distribution of functions by subsystems

