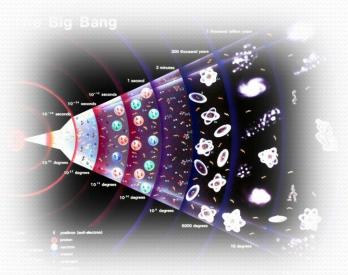
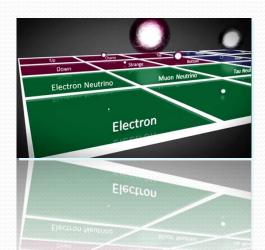
DEVELOPMENT OF GEOMETRICAL DESCRIPTIONS OF MAGNET SYSTEM OF ATLAS DETECTOR FOR THE SIMULATION AND RECONSTRUCTION SOFTWARE PACKAGES

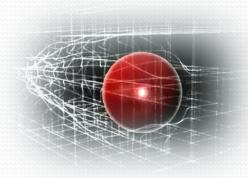
Master's Degree DISSERTATION

Niko TSUTSKIRIDZE

TECHNICAL UNIVERSITY OF GEORGIA


EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH, CERN

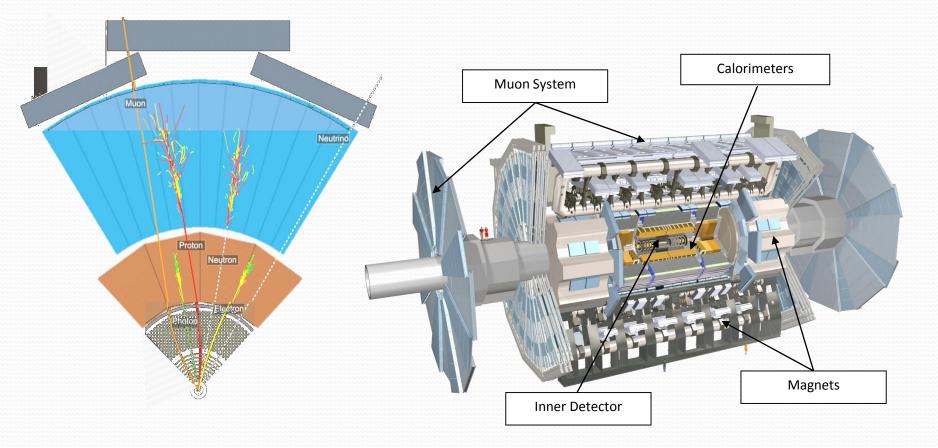



6th of June, 2012 CERN, Geneva, Switzerland

High Energy Physics Research

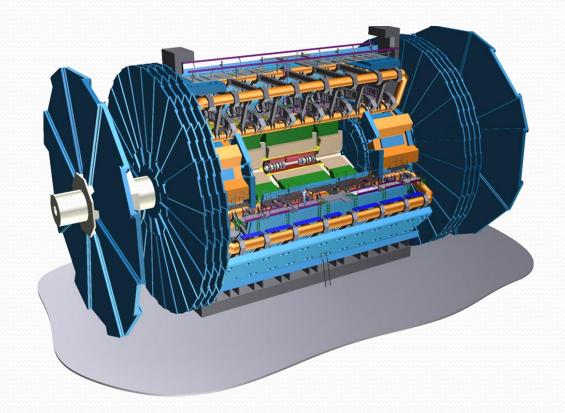
- Investigation of Big Bang
- How matter was created
- Are there any extra dimensions
- Microscopic black holes

High Energy Physics Research

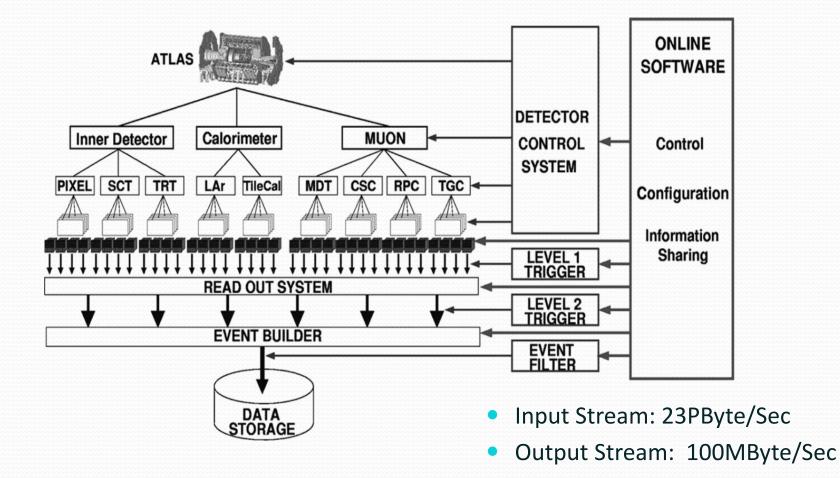


- LHC Large Hadronic Collider, Geneva, Switzerland
- 10'000 Science and Engineers
- 100 Countries
- ITER International Thermonuclear Experimental Reactor, Cadareche, France
- 33 Countries

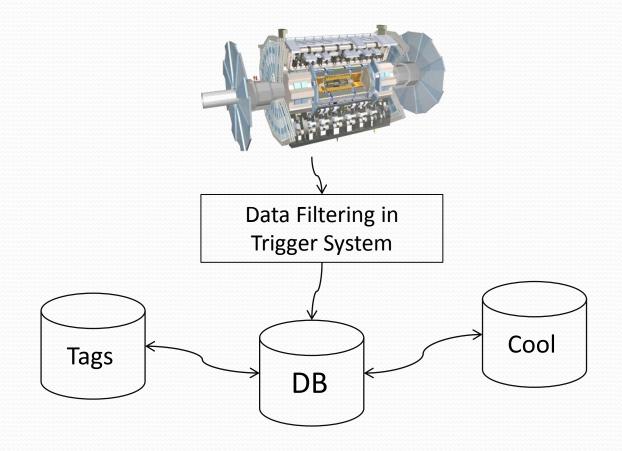
- FAIR Facility for Antiproton and Ion Research Darmstadt, Germany
- 11 Countries


SIS 100/300

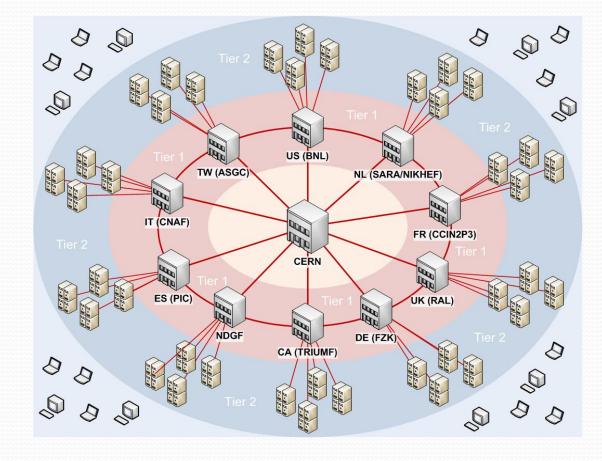
ATLAS Detector Description



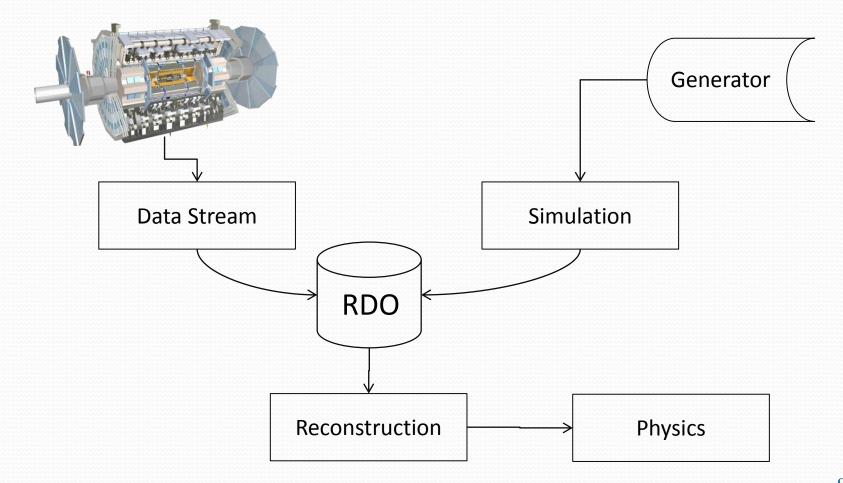
ATLAS Computing


- 5 Main Directions:
- Data Acquisition
- Data Storage
- Reconstruction
- Simulation
- Data Distribution

ATLAS Computing/Data Acquisition



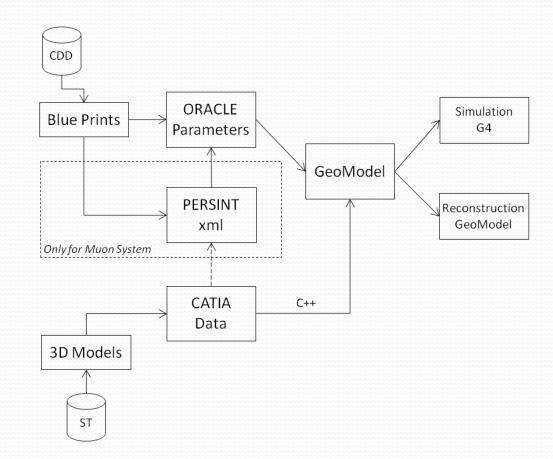
ATLAS Computing/Data Storage



ATLAS Computing/Data Distribution

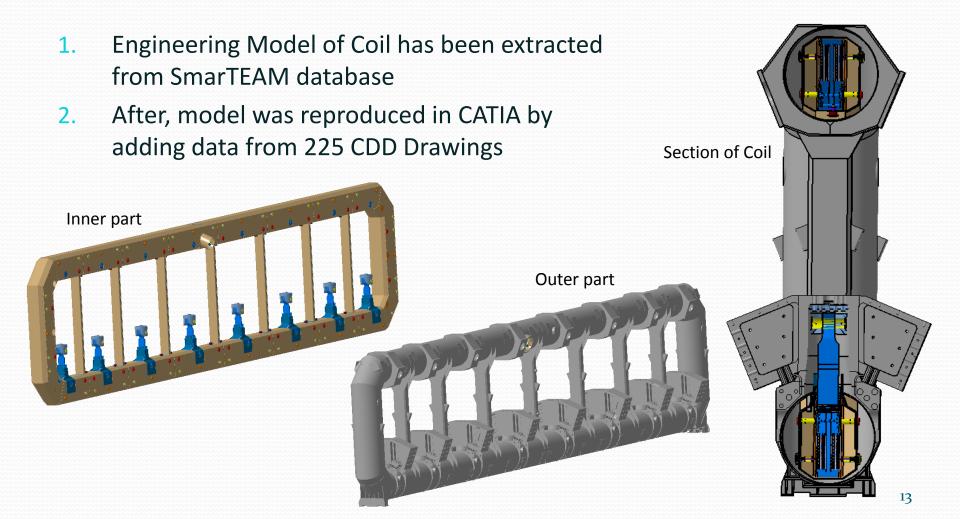
GRID

Reconstruction and Simulation


Detector Structure in Geant4/C++

Geant4/C++ Models Preparation

New Method Forsee:

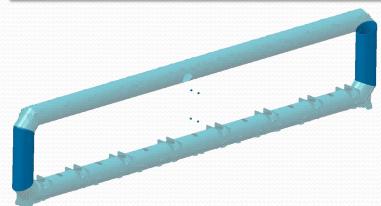

- Extraction of Models from
 Smarteam Engineering Database
- Import of Geant4/C++ models in CATIA
- Compare Analysis
- Modification of Component Geometry
- Geant4/C++ conflicts checking

Research Map of Dissertation

- 1. Reproduction of Coils Engineering Model in CATIA
- 2. Segmentation and Definition of Mass Properties
- Compare Analysis of Engineering and GEANT4/C++ Models
- 4. Simplification of Geometry
- 5. Generation of Geant4/C++ Codes

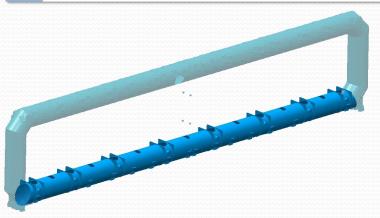
Model Reproduction in CATIA

Vol.1. Cryostat Top

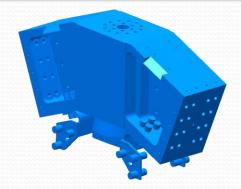

e 1	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m³)	Total (Volume (m³)	Total Ma (kgs)	ass	
T amnio A	1	Cryostat Top	Assembly	Stainless Steel 304L	8000	1.26	1	26	10 08		
>							To	otal Mass (kg):	10 088		
							Volume 2,4,6,8	Number of It 4	ems	Part Name Cryostat Corner	Vol

Vol.2, 4, 6, 8. Cryostat Corner

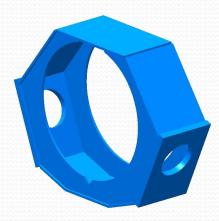
<i>8 8</i>	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m ³)	Total Volume (m ³)	Total Mass (kgs)
Volume 2,4,6,8	4	Cryostat Corner	Assembly			0.04	0.16	1 344
2.1							Total Mass (kg)	1 344
					-			
		- <u>·</u>			1			
		* •		1				
$\langle \rangle$								14


Vol.3, 7. Cryostat Short

ne 3,7	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m³)	Total Volume (m³)	Total Mass (kgs)
olum	2	Cryostat Short	Assembly	Stainless Steel 304L	8000	0.16	0.34	2 704
٨٥							Total Mass (kg):	2 704


Vol.5. Cryostat Bottom

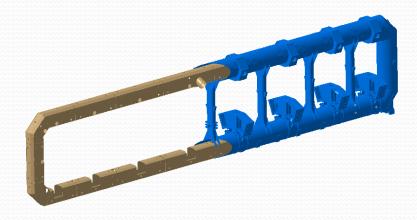
me 5	Number of Items	Part Name		Material	Density (kgs/m ³)	Volume (m ³)	Total Volume (m³)	Total Mass (kgs)
unja	1	Cryostat bottom	Assembly	Stainless Steel 304L	8000	1.42	1.42	11 368
S							Total Mass (kg):	11 368


Vol.9. Voussoirs

6	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m³)	Total Volume (m³)	Total Mass (kgs)
lume	8	Voussoirs	Assembly	Aluminum/Stainless Steel 304L	2650	0.55	4.42	12 344
Vo							Total Mass (kg):	12 344

Vol.10. Steffeners

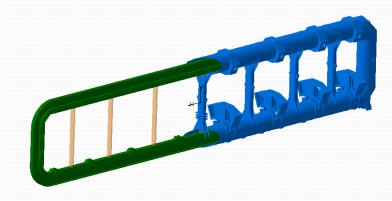
e 10	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m³)	Total Volume (m³)	Total Mass (kgs)
olume	8	Steffener	Assembly	Stainless Steel 304L	8000	0.08	0.67	5 336
>							Total Mass (kg):	5 336


Vol.11. Ribs

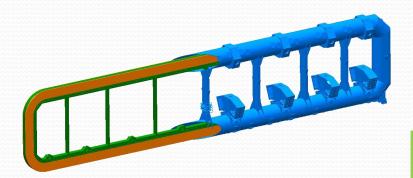
11	Number of Items	Part Name		Material	Density (kgs/m ³)	Volume (m³)	Total Volume (m³)	Total Mass (kgs)
lume	7	Rib	Assembly	Stainless Steel 304L	8000	0.09	0.6	4824
Vol							Total Mass (kg)	: 4 824

Vol.12. Thermal Shielding

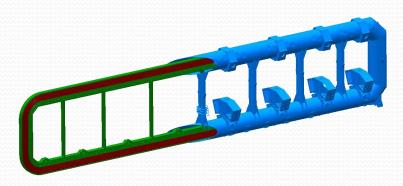
lume 12	Number of Items	Part Name	Material	Density (kgs/m³)	Volume (m³)	Total Volume (m³)	Total Mass (kgs)	
	1	Thermal Shielding	Part	Aluminum 3003.H22	2740	0.74	0.74	2 020
Vo							Total Mass (kg):	2 020


Vol.13. Tie Rod

	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m³)	Total Volume (m ³)	Total Mass (kgs)
	8	Tie rod	Part	Titan TA5E-ELI	4480	0.016	0.1280	573.44
ŝ	8	Lug (Tie rod)	Part	Stainless Steel Z3 CN18-10	8000	0.028	0.2240	1792.0
le 1	8	Shouldered axis (Tie rod)	Part	Titan TA5E-ELI	4480	0.005	0.0400	179.2
Volume	8	Small bar support (Tie rod)	Part	Stainless Steel Z3 CN18-10	8000	0.0002946	0.0024	18.9
Vo	16	Piston (Tie rod)	Part	Stainless Steel Z ₃ CN18-10	8000	0.00007062	0.0011	9.0
	16	Convex bar (Tie rod)	Part	Stainless Steel Z3 CND 17-12 Az	8000	0.00008187	0.0013	10.5
	16	Concave bar (Tie rod)	Part	Stainless Steel Z3 CND 17-12 Az	8000	0.0001569	0.0025	20.1
	8	Tie-Rod Therm. Plate	Part	Al uminum 1050 H22	2705	0.015	0.12	324.6
						Total:	0.52	2 928

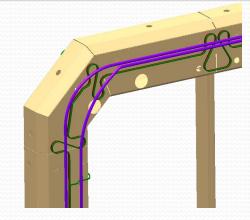

Vol.14. Casing

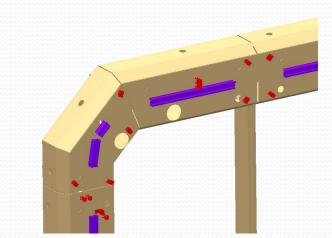
	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m³)	Total Volume (m³)	Total Mass (kgs)
e 14	1 casing	1	Part	Aluminum 5083	2650	6.959	6.959	18440.82
olum	86		Part	Aluminum 7075 T73	2810	0.00022	0.0189	53.1
٧٥	16		Part	Aluminum 5083	2650	0.0002	0.032	84.8
						Total :	7	18 579


Vol.15. Casing Part

15	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m³)	Total Volume (m³)	Total Mass (kgs)
olume	1	casing part	Part	Aluminum 5083 h112	2660	1.87	1.87	4 964
Ň							Total Mass (kg)	:4 963

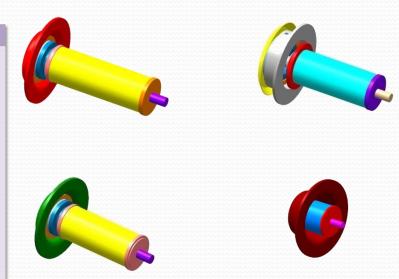
Vol.16. Coils


16	Number of Items	Part Name		Material	Density (kgs/m ³)	Volume (m ³)	Total Volume (m ³)	Total Mass (kgs)
ami	1	Coils	Part	Aluminum	2700	4.37	4.37	11573
Volt							Total Mass (kg)	: 11 573


Vol.17. Services

	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m³)	Total Volume (m ³)	Total Mass (kgs)
	1	Pipes	Part	Aluminum 1050	2705	0.0640	0.0640	173.1
17	1	Part5	Part	Stainless Steel 304L	8000	0.0040	0.0040	32.0
me	1	Part2	Part	Stainless Steel 304L	8000	0.0040	0.0040	32.0
Volume	1	atltbyr_0036	Part	Stainless Steel 304L	8000	0.0006	0.0006	4.6
2	2	atltbyr_0035	Part	Stainless Steel 304L	8000	0.0003	0.0005	4.1
	1	atltbyr_0034	Part	Stainless Steel 304L	8000	0.0005	0.0005	4.1
	1	atltbyr_0033	Part	Stainless Steel 304L	8000	0.0004	0.0004	3.2
						Total :	0.07	253

Vol.18. Service Support

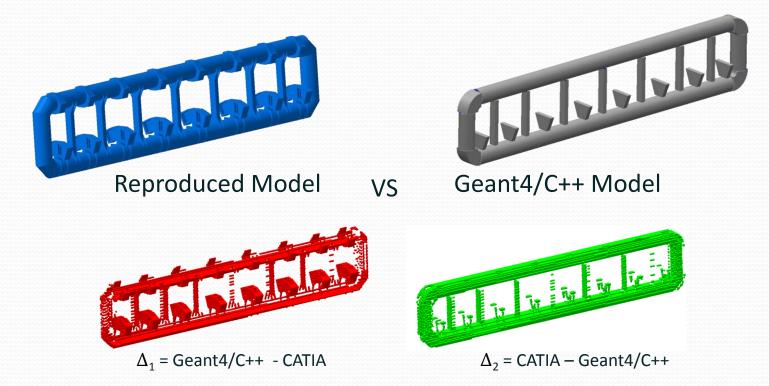


18	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m³)	Total Volume (m³)	Total Mass (kgs)
me	139	S3	Part	Multiple*		0.000085	0.01	31.72
olu	81	Parts	Part	Multiple*		0.00018	0.01479	22.1
Š	1	Pipes	Part	Aluminum 1050	2705	0.179	0.179	484.2
						Total	0.7	E 2 9 0

Vol.19. Fasteners

	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m³)	Total Volume (m³)	Total Mass (kgs)
	108	Support A1.1	Part	Aluminum 5083 F	2660	0.0001048	0.0113184	30.1
	108	Support A1.5	Part	Stainless Steel 304L	8000	0.00004723	0.00510084	40.8
	108	Support A1.6	Part	Stainless Steel 304L	8000	0.00006412	0.00692496	55.4
	100	Support A1.8	Part	Stainless steel AISI 304 L	8000	0.00002734	0.002734	21.9
	52	Support C1.2	Part	Aluminum 5083 F	2660	0.0001228	0.0063856	17.0
	58	Support C1.7	Part	Stainless Steel 304L/316L	8000	0.0000223	0.0012934	10.3
~	58	Support C1.8	Part	Stainless Steel 304L/316L	8000	0.00002888	0.00167504	13.4
Volume 19	28	Support D1.1	Part	Stainless Steel 304L/316L	8000	0.00005369	0.00150332	12.0
Ĩ	28	Support D1.5	Part	Aluminum 2024 T3	2780	0.0001857	0.0051996	14.5
lol	44	E EST_2	Part	Stainless Steel AISI 304 L	8000	0.0004261	0.0187484	150.0
~	44	E EST_3	Part	PERMAGLAS TE630	1850	0.0005058	0.0222552	41.2
	44	E EST_4	Part	Aluminum	2700	0.0007714	0.0339416	91.6
	44	E EST_5	Part	Aluminum	2700	0.0005786	0.0254584	68.7
	44	E EST_6	Part	Aluminum	2700	0.0006777	0.0298188	80.5
	44	E EST_7	Part	Aluminum	2700	0.0001206	0.0053064	14.3
	44	E EST_9	Part	Aluminum	2700	0.0005685	0.025014	67.5
	72	Support F1.1	Part	Stainless Steel 304L/316L	8000	0.00008567	0.00616824	49.3
	72	Support F1.3	Part	Aluminum 2024 T3	2780	0.0001163	0.0083736	23.3
	72	Support F1.5	Part	Stainless Steel 304L/316L	8000	0.00003998	0.00287856	23.0
	72	Support F1.6	Part	Stainless Steel 304L/316L	8000	0.00009161	0.00659592	52.8
	72	Support F1.8	Part	Stainless Steel AISI 304L	8000	0.00002725	0.001962	15.7
	72	Support F1.13	Part	PERMAGLAS TE630	1850	0.00007735	0.0055692	10.3
	all	other parts					0.0591	213.4
							Total Mass (kg):	1117.1

21


Vol.20. Ribs of Thermal Shielding

20	Number of Items	Part Name		Material	Density (kgs/m³)	Volume (m³)	Total Volume (m³)	Total Mass (kgs)
olume	7	Ribs of Thermal Shielding	Part	Aluminum 3003.H22	2740	0.0144	0.101	276
Vol							Total Mass (kg):	276

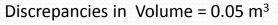
Vol.21. Ribs of Casing

e 21	Number of Iten	umber of Items Part Name		Material	Density (kgs/m³)	Volume (m³)	Total Volume (m³)	Total Mas (kgs)
Volume 21	7	Ribs of Coil casing	Part	Aluminum 5083	2650	0.1	0.7	1873
100							Total Mass (kg)	: 1 873

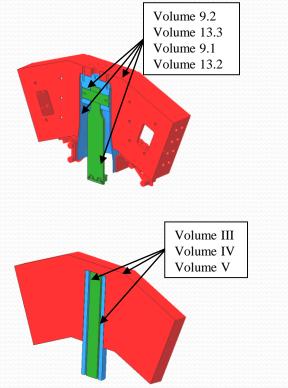
Compare Analysis

 $\Delta_{v} = \Delta_{v1} + \Delta_{v2} + \Delta_{v3} + \Delta_{v4} + \Delta_{v5} + \Delta_{v6} + \Delta_{v7} + \Delta_{v8} = 0.124 \text{ m}^{3} - 0.001 \text{ m}^{3} + 0.176 \text{ m}^{3} + 0.198 \text{ m}^{3} - 0.157 \text{ m}^{3} + 0.088 \text{ m}^{3} + 0.149 \text{ m}^{3} + 2.327 \text{ m}^{3} = 2.9 \text{ m}^{3}$

 $\Delta_{v} = \Delta_{m1} + \Delta_{m2} + \Delta_{m3} + \Delta_{m4} + \Delta_{m5} + \Delta_{m6} + \Delta_{m7} + \Delta_{m8} = 1138 \text{ kg} + 14 \text{ kg} + 158 \text{ kg} + 1738 \text{ kg} - 911 \text{ kg} + 778 \text{ kg} + 1248 \text{ kg} + 7517.9 \text{ kg} = 11680.9 \text{ kg}$


Simplification of Geometry

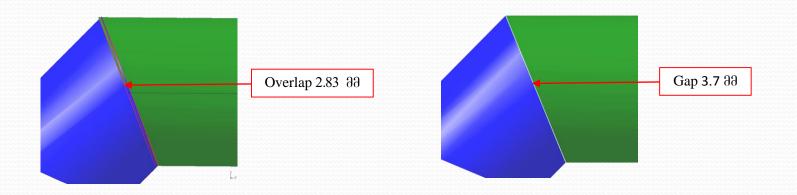
2 Standard Phases of Synthesis:


- Grouping of components with same materials and density
- Unify groups with kindred materials and density

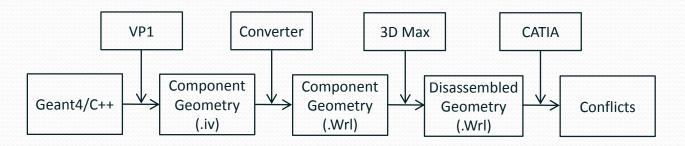
Simplification of Voussoirs

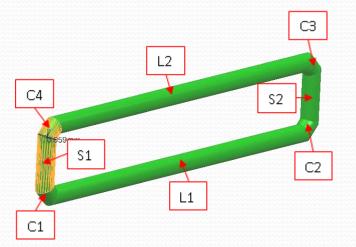
	Name	Material	Density	Volume	Weight	-	
	Vossuoir	Aluminium	2650	0.537	1423	-	Volume 9.1
Volume 9	Vossuoir	SSTEEL	8000	0.015	120		Volume 9.2
	Tie rod	TA5 E-ELI	4480	0.016	72	_ I	
	Lug	Z3 CN18-10	8000	0.028	224		Volume 13.2
	Shouldered axis	TA5 E-ELI	4480	0.005	22	<u> </u>	
	Small bar support	Z3 CN18-10	8000	0.0003	2		
Volume 13	Piston	Z3 CN18-10	8000	0.0001	1		
	Convex bar	Z3 CND 17-12 Az	8000	0.0001	1		Volume 13.3
	Concave bar	Z3 CND 17-12 Az	8000	0.0002	1		
	Tie-Rod Therm. Plate	Al 1050 H22	2705	0.015	41	-	Volume 13.1

in Mass = 15Kg

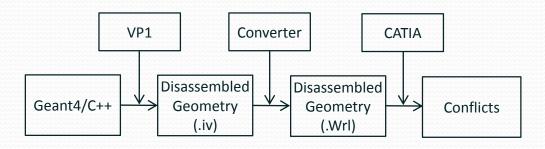


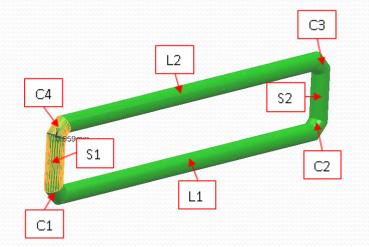
1st Phase


2nd Phase


Geant4/C++ causes:

- Necessity for additional detailzation of Geometry
- Programming in Z0 position
- Necessity in additional geometrical transactions for final positioning
- Creation of Overlaps and Gaps


Method for Geant4/C++ conflicts detection and evaluation in CATIA




No.	Product 1	Product 2	Type	Value
1	C1 (C1.1)	L1 (L1.1)	Clash	-4.62
2	C1 (C1.1)	S1 (S1.1)	Clash	-1.41
3	C2 (C2.1)	L1 (L1.1)	Clash	-3.38
4	C2 (C2.1)	S2 (S2.1)	Clash	-0.96
5	C3 (C3.1)	L2 (L2.1)	Clash	-3.03
6	C3 (C3.1)	S2 (S2.1)	Clash	-0.58
7	C4 (C4.1)	L2 (L2.1)	Clash	-3.99
8	C4 (C4.1)	S1 (S1.1)	Clash	-0.49

• Method for Geant4/C++ conflicts detection and evaluation in CATIA

Overlap ^{Components}		Volume I (mm)								
		Sector 2	Sector 4	Sector 6	Sector 8	Sector 10	Sector12	Sector 14	Sector 16	
С3	L2	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	
С3	52	0	0	0	0	0	0	0	0	
C4	L2	0.04	0.03	0.03	0.03	0.03	0	0.03	0.03	
C4	S1	0	0	0	0	0.03	0	0	0	
C1	L1	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	
C1	51	0	0	0	0	0	0	0	0	
C2	L1	0	0	0	0	0	0	0	0	
C2	52	0	0	0	0	0	0	0	0	

- According to Given Structure it was generated Geant4/C++ code for the full Coil
- Code consists of 235 programming strings

Conclusions

- 1. Creation of precise descriptions of ATLAS detector components on the base of engineering data is actual task for the Reconstruction and Simulation
- Implementation of CATIA provides efficient way for the comparison of Geant4/C++ descriptions with Engineering models
- 3. Compare analysis should be done by CATIA DMU algorithms
- 4. Geometry export from Geant4/C++ to CATIA should be done on the base of facet representation of geometry (*.wrl* file)
- 5. New method of visualisation and calculation of Geant4/C++ overlaps and Gaps on the base of CATIA, was developed
- For the ATLAS detector Coils New models reproduction, Compare analysis, Simplification and Geant4/C++ code generation have been done

Thank you for Attention